Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanotube Sandwiches Could Lead To Better Composite Materials

Nanotube Sandwiches Could Lead To Better Composite Materials

Posted on May 08, 2006

By stacking layers of ceramic cloth with interlocking nanotubes in between, a team of researchers has created new composites with significantly improved properties compared to traditional materials. The “nanotube sandwiches,” which are described in the May 7 online edition of the journal Nature Materials, could find use in a wide array of structural applications.

“Nanotubes are a very versatile material with absolutely fascinating physical properties, all the way from ballistic conduction to really interesting mechanical behavior,” says Pulickel Ajayan, the Henry Burlage Professor of Materials Science and Engineering at Rensselaer and a lead author of the paper, along with colleagues at the University of Hawaii at Manoa. Some fundamental issues, however, have kept researchers from realizing the full potential of nanotubes, particularly when combining them with other materials to make composites. The interface between the materials is not as strong as one might expect, Ajayan notes, because it is difficult to disperse nanotubes and to align them in an orderly way.

Ajayan and his colleagues have pioneered a process to help overcome these difficulties, and they are putting it to use in a wide variety of applications. For the current project, the researchers are applying the process to a new area: reinforced composite fabrics made from woven ceramic fibers. These materials have been used for decades in structural applications, but they tend to perform poorly in terms of “through-thickness,” or the ability of a material to respond to forces applied perpendicular to the fabric-stacking direction, according to Ajayan.

“We have demonstrated that these through-thickness properties can be improved by adding nanotube Velcro-like structures between the layers,” says Mehrdad Ghasemi-Nejhad, professor of mechanical engineering at Hawaii and a lead author of the paper. To make the new materials, the researchers deposit a forest of carbon nanotubes across the surface of a cloth woven from fibers of silicon carbide — a ceramic compound made from silicon and carbon. The fabric layers are infiltrated with a high-temperature epoxy matrix, and then several layers of cloth are stacked on top of each other to form a three-dimensional composite “sandwich,” with interlocking nanotubes acting to fasten the layers together.

“This is a very nice example of how to use nanotubes to solve major existing problems, rather than going all-out to make composites based on nanotubes alone, which has proven to be a very challenging task,” Ajayan says. The team has successfully made cloths up to roughly five inches by two inches, and the process is easily scalable to make larger materials, they say.

The researchers ran several experiments to test the new material’s properties, and they found that the interlocking nanotubes provided remarkable improvements in strength and toughness under various loading conditions. The materials performed extremely well in fracture tests, and they demonstrated a five-fold increase in damping — or the ability to dissipate energy — over the original ceramic composites without nanotubes included. This suggests that the new composites could be used in many applications where mechanical properties are important, from automobile engines to golf club shafts.

Tests also showed that both the thermal and electrical conductivity of the new composites were significantly improved, which means that they could potentially be employed as sensors to monitor crack propagation in various structures, the researchers note.

The University of Hawaii at Manoa team included Vinod Veedu, a graduate student at the Hawaii Nanotechnology Laboratory; Anyuan Cao, assistant professor of mechanical engineering; and Kougen Ma, associate director of the Intelligent and Composite Materials Laboratory. Several other Rensselaer researchers also participated in the project: Caterina Soldano, a doctoral student in physics, applied physics, and astronomy; Xuesong Li, a doctoral student in materials science and engineering; and Swastik Kar, a postdoctoral researcher in materials science and engineering.

Ajayan received funding for the project from the Focus Center-New York, which is part of the Interconnect Focus Center; and Rensselaer’s National Science Foundation-funded Nanoscale Science and Engineering Center for the Directed Assembly of Nanostructures.

####

Nanotechnology at Rensselaer:
In September 2001, the National Science Foundation selected Rensselaer as one of the six original sites for a new Nanoscale Science and Engineering Center (NSEC). As part of the U.S. National Nanotechnology Initiative, the program is housed within the Rensselaer Nanotechnology Center and forms a partnership between Rensselaer, the University of Illinois at Urbana-Champaign, and Los Alamos National Laboratory. The mission of Rensselaer’s Center for Directed Assembly of Nanostructures is to integrate research, education, and technology dissemination, and to serve as a national resource for fundamental knowledge in directed assembly of nanostructures. The five other original NSECs are located at Harvard University, Columbia University, Cornell University, Northwestern University, and Rice University.

About Rensselaer Polytechnic Institute:
Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The university offers bachelor’s, master’s, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

For more information, please click here.

Media Contact:
Tiffany Lohwater
Media Relations Specialist
Rensselaer Polytechnic Institute
110 8th Street
Troy, NY 12180
Phone: 518-276-6542
Fax: 518-276-6091
lohwat@rpi.edu

Copyright © Rensselaer Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project