Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Advancements in printable solar cell research using carbon nanotubes

Abstract:
Research on Replacement of ITO and PEDOT in organic and ZnO in CIGS solar cells will be presented at IEEE 4th World Conference on Photovoltaic Energy Conversion in Waikoloa, Hawaii

Advancements in printable solar cell research using carbon nanotubes announced by Eikos and National Renewable Energy Laboratory

Eikos Inc

Franklin, MA | Posted on May 05, 2006

Eikos Inc., a developer and licensor of highly transparent carbon nanotube (CNT) inks for conductive coatings and circuits, and the National Renewable Energy Laboratory (NREL) have achieved competitive efficiency in two types of solar cells using carbon nanotube conductive coatings, in a significant step toward developing fully printable solar cells.

The research will be presented in two sessions at the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion in Waikoloa, Hawaii, May 7-12.

Using Eikos Invisicon® carbon nanotube conductive coatings, NREL/Eikos created organic solar cell structures which achieved an efficiency of 2.6% -- making them competitive with commonly used Indium Tin Oxide (ITO) transparent conductors. Additionally, Invisicon® coatings replacing both ITO and PolyEthyleneDiOxyThiophene (PEDOT) were 1.5% efficient, and further reduce the number of layers and costs to these cells. Organic photovoltaics (OPVs) using carbon nanotubes are an attractive alternative to traditional silicon-based solar cells because they are inexpensive and abundant, can be manufactured more efficiently and are both lightweight and flexible.

Today, both ITO and PEDOT are used as transparent electrodes in organic cells. However, Indium Tin Oxide layers are expensive to fabricate, and Indium is costly to acquire and is only available in limited quantities. ITO is also optically, electronically and chemically problematic. PEDOT:PSS has limitations since it is known to degrade under UV illumination, introduces water in to the devices’ active layer, and retains a degree of acidity.

As part of the U.S. Department of Energy Contract through which the solar research is being conducted, NREL/Eikos also produced the world’s first thin-film Copper Indium Gallium diSelenide (CIGS) solar cell incorporating CNTs, with a significant 12.98% energy conversion efficiency using its Invisicon® transparent coatings instead of doped Zinc Oxide. Using anan aluminum aluminum doped Zinc Oxide transparent electrode, the record efficiency is thought to be 19.5%

According to program manager Jorma Peltola, “These are exciting developments for the solar community which is now one step closer to achieving a fully printable solar cell. Our Invisicon® technology will provide equal efficiency to conventional cells, at less than half the cost, with less weight and more flexibility. Eikos/NREL is proud to be spearheading research that could harness cleaner, more abundant solar energy resources.”

Aspects of this research are slated to be published in a major journal in the near future. The article is coauthored by NREL of Golden, Colorado and Eikos of Franklin, MA.

####

About Eikos:
Eikos, Inc. is a developer and manufacturer of highly transparent carbon nanotube inks for conductive coatings and circuits for use in solar cells, flat panel displays, OLED lighting, smart windows and other established markets. Eikos' patented InvisiconR transparent conductors ('nanowires') will enable high volume, low cost production of a thinner, more flexible and more durable conductive coating technology that will displace Indium Tin Oxide (ITO), Zinc Oxide, PEDOT/PSS, and other transparent conductors.

A privately held company headquartered in Franklin Massachusetts, Eikos has a number of licenses and development contracts with major global companies, U.S. military agencies and NASA.

For more information, please click here.


Contact:
Andrew Lavin
A. Lavin Communications
212-290-9540
alc@alavin.com

Copyright © Eikos

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project