Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > MIT nanoparticles may help detect, treat tumors

Abstract:
Technique may one day help physicians detect cancerous tumors in early stages

MIT nanoparticles may help detect, treat tumors

Cambridge, MA | Posted on May 01, 2006

A new technique devised by MIT engineers may one day help physicians detect cancerous tumors during early stages of growth.

The technique allows nanoparticles to group together inside cancerous tumors, creating masses with enough of a magnetic signal to be detectable by a magnetic resonance imaging (MRI) machine.

The work appears as the cover feature in the May issue of Angewandte Chemie International Edition, one of the world's leading chemistry journals.

The research, which is just moving into animal testing, involves injecting nanoparticles (billionths of a meter in size) made of iron oxide into the body, where they flow through the bloodstream and enter tumors.

Solid tumors must form new blood vessels to grow. But because this growth is so rapid in cancerous tumors, there are gaps in the endothelial cells that line the inside of the blood vessels. The nanoparticles can slip through these gaps to enter the tumors.

Once inside the tumor, the nanoparticles can be triggered to group together by a mechanism designed by the MIT engineers. Specifically, certain enzymes, or proteases, inside the tumors cause the nanoparticles to "self-assemble" or stick together. The resulting nanoparticle clumps are too big to get back out of the gaps. Further, the clumps have a stronger magnetic signal than do individual nanoparticles, allowing detection by MRI.

"We inject nanoparticles that will self-assemble when they are exposed to proteases inside of invasive tumors," said Sangeeta N. Bhatia, M.D., Ph.D., associate professor of the Harvard-MIT Division of Health Sciences & Technology (HST) and Electrical Engineering and Computer Science (EECS). "When they assemble they should get stuck inside the tumor and be more visible on an MRI. This might allow for noninvasive imaging of fast-growing cancer 'hot spots' in tumors." Bhatia also is affiliated with the MIT-Harvard Center of Cancer Nanotechnology Excellence.

The technique initially is being used to study breast tumors. Bhatia added that it eventually may be applied to many different types of cancers and to study the "triggers" that turn a benign mass in the body into a cancerous tumor. Nanoparticles also hold the promise of carrying medicines that could kill cancer cells, replacing radiation or chemotherapy treatments that cause negative side effects such as hair loss or nausea.

The researchers hold a provisional patent on their work.

Co-authors on the paper are Todd Harris and Geoffrey von Maltzahn, HST graduate students; Austin Derfus, a graduate student at the University of California at San Diego; and Erkki Ruoslahti, M.D., Ph.D., a professor at The Burnham Institute in LaJolla, Calif.

The work was supported by the National Cancer Institute, the National Aeronautics and Space Administration and the Whitaker Foundation.

Contact:
Elizabeth A. Thomson
MIT News Office
617-258-5402
thomson@mit.edu

Copyright MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Self Assembly

Searching for a nanotech self-organizing principle May 1st, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Brookhaven's Oleg Gang Named a Battelle 'Inventor of the Year': Recognized for work using DNA to guide and regulate the self-assembly of nanoparticles into clusters and arrays with controllable properties April 25th, 2016

Researchers develop new semiconducting polymer for forthcoming flexible electronics April 21st, 2016

Nanomedicine

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Materials/Metamaterials

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

Announcements

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Patents/IP/Tech Transfer/Licensing

System creates on-demand 'nanotube forests,' has potential industry applications April 20th, 2016

Smaller. Cheaper. Better. Iron nitride transformers developed at Sandia could boost energy storage options March 28th, 2016

Correction: Solar fuels: Protective layer for the 'artificial leaf' March 22nd, 2016

New nanoparticle technology to decipher structure and function of membrane proteins March 9th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic