Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > MIT nanoparticles may help detect, treat tumors

Abstract:
Technique may one day help physicians detect cancerous tumors in early stages

MIT nanoparticles may help detect, treat tumors

Cambridge, MA | Posted on May 01, 2006

A new technique devised by MIT engineers may one day help physicians detect cancerous tumors during early stages of growth.

The technique allows nanoparticles to group together inside cancerous tumors, creating masses with enough of a magnetic signal to be detectable by a magnetic resonance imaging (MRI) machine.

The work appears as the cover feature in the May issue of Angewandte Chemie International Edition, one of the world's leading chemistry journals.

The research, which is just moving into animal testing, involves injecting nanoparticles (billionths of a meter in size) made of iron oxide into the body, where they flow through the bloodstream and enter tumors.

Solid tumors must form new blood vessels to grow. But because this growth is so rapid in cancerous tumors, there are gaps in the endothelial cells that line the inside of the blood vessels. The nanoparticles can slip through these gaps to enter the tumors.

Once inside the tumor, the nanoparticles can be triggered to group together by a mechanism designed by the MIT engineers. Specifically, certain enzymes, or proteases, inside the tumors cause the nanoparticles to "self-assemble" or stick together. The resulting nanoparticle clumps are too big to get back out of the gaps. Further, the clumps have a stronger magnetic signal than do individual nanoparticles, allowing detection by MRI.

"We inject nanoparticles that will self-assemble when they are exposed to proteases inside of invasive tumors," said Sangeeta N. Bhatia, M.D., Ph.D., associate professor of the Harvard-MIT Division of Health Sciences & Technology (HST) and Electrical Engineering and Computer Science (EECS). "When they assemble they should get stuck inside the tumor and be more visible on an MRI. This might allow for noninvasive imaging of fast-growing cancer 'hot spots' in tumors." Bhatia also is affiliated with the MIT-Harvard Center of Cancer Nanotechnology Excellence.

The technique initially is being used to study breast tumors. Bhatia added that it eventually may be applied to many different types of cancers and to study the "triggers" that turn a benign mass in the body into a cancerous tumor. Nanoparticles also hold the promise of carrying medicines that could kill cancer cells, replacing radiation or chemotherapy treatments that cause negative side effects such as hair loss or nausea.

The researchers hold a provisional patent on their work.

Co-authors on the paper are Todd Harris and Geoffrey von Maltzahn, HST graduate students; Austin Derfus, a graduate student at the University of California at San Diego; and Erkki Ruoslahti, M.D., Ph.D., a professor at The Burnham Institute in LaJolla, Calif.

The work was supported by the National Cancer Institute, the National Aeronautics and Space Administration and the Whitaker Foundation.

Contact:
Elizabeth A. Thomson
MIT News Office
617-258-5402
thomson@mit.edu

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Self Assembly

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Outsmarting Thermodynamics in Self-assembly of Nanostructures: Berkeley Lab reports method for symmetry-breaking in feedback-driven self-assembly of optical metamaterials November 4th, 2014

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Nanomedicine

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Iran Exports Nanodrugs to Syria November 24th, 2014

Materials/Metamaterials

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

Sustainable Nanotechnologies Project November 20th, 2014

Total Nanofiber Solutions Company FibeRio® Launches The Fiber Engine® FX Series Systems with 10X Increase in Output November 18th, 2014

Nanocomposites Strengthen Bone Implants November 13th, 2014

Announcements

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Cooling with the coldest matter in the world November 24th, 2014

Patents/IP/Tech Transfer/Licensing

Dicerna Announces License Agreement with Tekmira to Advance Dicerna’s PH1 Development Program November 17th, 2014

First genetic-based tool to detect circulating cancer cells in blood: NanoFlares light up individual cells if breast cancer biomarker is present November 17th, 2014

Ki-Bum Lee Patents Technology To Advance Stem Cell Therapeutics November 13th, 2014

'Direct writing' of diamond patterns from graphite a potential technological leap November 5th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE