Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > DNA Taxi

Abstract:
Photosensitive gold nanoparticles can electrostatically bind DNA and then release it under UV light

DNA Taxi

Posted on April 27, 2006

Despite few successes to date, gene therapy is a highly promising approach for medical therapy in the future. One of the biggest difficulties with this process is finding a suitable transport agent that can carry the nucleic acid being used as a “drug” into the diseased target cell. Killed viruses have been used as “taxis” for these genes, but these often have unexpected health consequences.

Recently, nanoparticles have been developed for gene therapy. A successful example of this has been described by V. M. Rotello, N. S. Forbes, and their co-workers in Massachusetts, USA. They used tiny spheres of gold with tightly packed, positively charged hydrocarbon chains bound to their surface. These chains contain a photolabile bond that is stable to visible light but breaks when irradiated with UV light at a wavelength of 350 nm. This causes the positively charged fragment to fall off, leaving the gold sphere with a negative charge on its surface.

DNA contains negatively charged phosphate groups that allow it to bind to the positively charged gold spheres through electrostatic interactions. Cells that were brought into contact with gold spheres loaded with DNA allowed these “DNA taxis” to pass into their interior. The signal to “unload” was given by subsequent irradiation with UV light: it destroyed the photolabile bond, reversing the surface charge of the gold particles and releasing the DNA. Fortunately, the DNA was not only brought into the cytoplasm; it made its way to where it was needed: the cell nucleus. This is the location in the cell where DNA molecules are copied for translation into proteins or are multiplied for cell division.

This process offers a relatively simple possibility for the transport and controlled release of DNA into living cells. In addition, the authors believe that this method should make it possible to steer interactions with other biomolecules, such as proteins or pharmaceutical agents, making it possible to target specific cells.

####


Author: Vincent M. Rotello, University of Massachusetts, Amherst (USA), www.chem.umass.edu/Faculty/rotello.htm

Title: Light-Regulated Release of DNA and its Delivery to Nuclei by Means of Photolabile Gold Nanoparticles

Angewandte Chemie International Edition, 2006, 45, No. 19, 3165–3169, doi: 10.1002/anie.200600214

Contact:
Editorial office:
angewandte@wiley-vch.de

or David Greenberg (US)
dgreenbe@wiley.com

or Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Nanomedicine

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

Nanopolymer-modified protein array can pinpoint hard-to-find cancer biomarker November 17th, 2016

Materials/Metamaterials

Inside tiny tubes, water turns solid when it should be boiling: MIT researchers discover astonishing behavior of water confined in carbon nanotubes November 30th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

Uncovering the secrets of friction on graphene: Sliding on flexible graphene surfaces has been uncharted territory until now November 23rd, 2016

2-D material a brittle surprise: Rice University researchers finds molybdenum diselenide not as strong as they thought November 14th, 2016

Announcements

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project