Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > DNA Taxi

Abstract:
Photosensitive gold nanoparticles can electrostatically bind DNA and then release it under UV light

DNA Taxi

Posted on April 27, 2006

Despite few successes to date, gene therapy is a highly promising approach for medical therapy in the future. One of the biggest difficulties with this process is finding a suitable transport agent that can carry the nucleic acid being used as a “drug” into the diseased target cell. Killed viruses have been used as “taxis” for these genes, but these often have unexpected health consequences.

Recently, nanoparticles have been developed for gene therapy. A successful example of this has been described by V. M. Rotello, N. S. Forbes, and their co-workers in Massachusetts, USA. They used tiny spheres of gold with tightly packed, positively charged hydrocarbon chains bound to their surface. These chains contain a photolabile bond that is stable to visible light but breaks when irradiated with UV light at a wavelength of 350 nm. This causes the positively charged fragment to fall off, leaving the gold sphere with a negative charge on its surface.

DNA contains negatively charged phosphate groups that allow it to bind to the positively charged gold spheres through electrostatic interactions. Cells that were brought into contact with gold spheres loaded with DNA allowed these “DNA taxis” to pass into their interior. The signal to “unload” was given by subsequent irradiation with UV light: it destroyed the photolabile bond, reversing the surface charge of the gold particles and releasing the DNA. Fortunately, the DNA was not only brought into the cytoplasm; it made its way to where it was needed: the cell nucleus. This is the location in the cell where DNA molecules are copied for translation into proteins or are multiplied for cell division.

This process offers a relatively simple possibility for the transport and controlled release of DNA into living cells. In addition, the authors believe that this method should make it possible to steer interactions with other biomolecules, such as proteins or pharmaceutical agents, making it possible to target specific cells.

####


Author: Vincent M. Rotello, University of Massachusetts, Amherst (USA), www.chem.umass.edu/Faculty/rotello.htm

Title: Light-Regulated Release of DNA and its Delivery to Nuclei by Means of Photolabile Gold Nanoparticles

Angewandte Chemie International Edition, 2006, 45, No. 19, 3165–3169, doi: 10.1002/anie.200600214

Contact:
Editorial office:
angewandte@wiley-vch.de

or David Greenberg (US)
dgreenbe@wiley.com

or Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Nanofiltration Membrane Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanozirconia Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Self-Healing Nano Anti-rust Coatings Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanomedicine

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Take a trip through the brain July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Materials/Metamaterials

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Shaping the hilly landscapes of a semi-conductor nanoworld August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Announcements

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project