Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > DNA Taxi

Abstract:
Photosensitive gold nanoparticles can electrostatically bind DNA and then release it under UV light

DNA Taxi

Posted on April 27, 2006

Despite few successes to date, gene therapy is a highly promising approach for medical therapy in the future. One of the biggest difficulties with this process is finding a suitable transport agent that can carry the nucleic acid being used as a “drug” into the diseased target cell. Killed viruses have been used as “taxis” for these genes, but these often have unexpected health consequences.

Recently, nanoparticles have been developed for gene therapy. A successful example of this has been described by V. M. Rotello, N. S. Forbes, and their co-workers in Massachusetts, USA. They used tiny spheres of gold with tightly packed, positively charged hydrocarbon chains bound to their surface. These chains contain a photolabile bond that is stable to visible light but breaks when irradiated with UV light at a wavelength of 350 nm. This causes the positively charged fragment to fall off, leaving the gold sphere with a negative charge on its surface.

DNA contains negatively charged phosphate groups that allow it to bind to the positively charged gold spheres through electrostatic interactions. Cells that were brought into contact with gold spheres loaded with DNA allowed these “DNA taxis” to pass into their interior. The signal to “unload” was given by subsequent irradiation with UV light: it destroyed the photolabile bond, reversing the surface charge of the gold particles and releasing the DNA. Fortunately, the DNA was not only brought into the cytoplasm; it made its way to where it was needed: the cell nucleus. This is the location in the cell where DNA molecules are copied for translation into proteins or are multiplied for cell division.

This process offers a relatively simple possibility for the transport and controlled release of DNA into living cells. In addition, the authors believe that this method should make it possible to steer interactions with other biomolecules, such as proteins or pharmaceutical agents, making it possible to target specific cells.

####


Author: Vincent M. Rotello, University of Massachusetts, Amherst (USA), www.chem.umass.edu/Faculty/rotello.htm

Title: Light-Regulated Release of DNA and its Delivery to Nuclei by Means of Photolabile Gold Nanoparticles

Angewandte Chemie International Edition, 2006, 45, No. 19, 3165–3169, doi: 10.1002/anie.200600214

Contact:
Editorial office:
angewandte@wiley-vch.de

or David Greenberg (US)
dgreenbe@wiley.com

or Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Nanomedicine

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Materials/Metamaterials

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Announcements

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Nanometrics Reports Second Quarter 2016 Financial Results July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic