Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > DNA Taxi

Abstract:
Photosensitive gold nanoparticles can electrostatically bind DNA and then release it under UV light

DNA Taxi

Posted on April 27, 2006

Despite few successes to date, gene therapy is a highly promising approach for medical therapy in the future. One of the biggest difficulties with this process is finding a suitable transport agent that can carry the nucleic acid being used as a “drug” into the diseased target cell. Killed viruses have been used as “taxis” for these genes, but these often have unexpected health consequences.

Recently, nanoparticles have been developed for gene therapy. A successful example of this has been described by V. M. Rotello, N. S. Forbes, and their co-workers in Massachusetts, USA. They used tiny spheres of gold with tightly packed, positively charged hydrocarbon chains bound to their surface. These chains contain a photolabile bond that is stable to visible light but breaks when irradiated with UV light at a wavelength of 350 nm. This causes the positively charged fragment to fall off, leaving the gold sphere with a negative charge on its surface.

DNA contains negatively charged phosphate groups that allow it to bind to the positively charged gold spheres through electrostatic interactions. Cells that were brought into contact with gold spheres loaded with DNA allowed these “DNA taxis” to pass into their interior. The signal to “unload” was given by subsequent irradiation with UV light: it destroyed the photolabile bond, reversing the surface charge of the gold particles and releasing the DNA. Fortunately, the DNA was not only brought into the cytoplasm; it made its way to where it was needed: the cell nucleus. This is the location in the cell where DNA molecules are copied for translation into proteins or are multiplied for cell division.

This process offers a relatively simple possibility for the transport and controlled release of DNA into living cells. In addition, the authors believe that this method should make it possible to steer interactions with other biomolecules, such as proteins or pharmaceutical agents, making it possible to target specific cells.

####


Author: Vincent M. Rotello, University of Massachusetts, Amherst (USA), www.chem.umass.edu/Faculty/rotello.htm

Title: Light-Regulated Release of DNA and its Delivery to Nuclei by Means of Photolabile Gold Nanoparticles

Angewandte Chemie International Edition, 2006, 45, No. 19, 3165–3169, doi: 10.1002/anie.200600214

Contact:
Editorial office:
angewandte@wiley-vch.de

or David Greenberg (US)
dgreenbe@wiley.com

or Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Using mathematics to improve human health February 3rd, 2016

Scientists have put a high precision blood assay into a simple test strip: Researchers have developed a new biosensor test system based on magnetic nanoparticles February 3rd, 2016

Nanomedicine

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Nanoparticles Make Fertility Possible during Consumption of Anticancer Drugs February 4th, 2016

Materials/Metamaterials

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

February 4th, 2016

Announcements

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic