Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NanoDynamics Commercializing Nanosilver for Electronics and Healthcare

Abstract:
Leading Nanotechnology Company Takes Silver Way Beyond Your Grandma's Tea Set

NanoDynamics Commercializing Nanosilver for Electronics and Healthcare

NanoDynamics

Buffalo, NY | Posted on April 04, 2006

Researchers at NanoDynamics, a leading manufacturer of nanomaterials and nanotechnology-enabled products, have developed a silver nanoparticle, only 20 nanometers (nm) in diameter (3000 times thinner than a human hair), that shows great potential in retarding the growth of bacteria, mold, harmful spores (such as anthrax), and other dangerous microbes on surfaces, a major pathway by which infectious diseases are spread. Additionally, in a partnership with Ames Goldsmith Corporation, the leading supplier of silver products to the electronics industry, NanoDynamics is positioned to commercialize an array of silver nanomaterials that can be printed by ink-jet or more traditional printing techniques directly onto a broad range of substrates, including flexible materials such as paper and plastic.

"We are only now beginning to tap into the real potential that nanoscale silver holds in addressing some of the world's most intractable healthcare problems," said Keith Blakely, CEO of NanoDynamics. "And now, with our research of printable electronics and the incorporation of nanosilver into manufacturing processes, we can drive down the manufacturing costs and improve the performance of electronic products."

NanoDynamics - Silver Platelets
Silver Platelets. Copyright © NanoDynamics

Click on image for larger version.

NanoDynamics produces nanosilver with a broad range of sizes and characteristics, including 10 nm dispersions and 60 nm dry powders. The company's most significant commercial breakthrough, though, may be nanosilver platelets that are especially adaptable to the electronics industry. These six-sided particles (see image, above) can be made compatible with ink jet technology and are many times smaller than the silver flake used in current conducting adhesives, which is typically about 10 microns in diameter. And, because they are exceptionally thin, the platelets can be printed in layers less than 200 nm thick, enabling the creation of significantly smaller electronic components and features than are currently available.

"The electronics industry consumes more than 109 million ounces of silver annually," said Michael Metz, Director of Business Development at Ames Goldsmith and NanoDynamics Business Development Consultant. "With prices currently around $10 an ounce, silver is a major expense for electronics manufacturers. There is growing demand for a product like nanosilver to replace traditional silver."

The silver powders traditionally used in the electronics industry have a key disadvantage: they sinter (that is, fuse under heat) at very high temperatures, generally between 650-850 degrees Celsius. Therefore, the substrate upon which the silver rests must itself be able to withstand such high temperatures. By comparison, NanoDynamics' nanosilver sinters at around 200 degrees Celsius and lower, depending upon the particle size, and can be printed onto a substrate with ink-jet technology. What this means is that electronics can be printed, cheaply and efficiently, directly onto a wider variety of substrates, including paper, cardboard and Mylar.

"Our nanosilver products have huge cost advantages for the electronics industry," said Dr. Alan Rae, NanoDynamics VP of Market and Business Development. "In the radio frequency identification (RFID) industry, for example, we could print RFID tags directly onto, say, a cereal box. About 600 million RFID tags were sold in 2005 at a cost of $1-2 per tag. But because of the savings in substrate materials, production processes, and silver usage, our technology offers the opportunity to create tags that could cost around 3 cents each."

According to industry analysts, the market for printable electronics could generate revenues of over $7 billion by 2010 driven by demand for printable displays, RFID, photovoltaics, computer memory and other printable products. To drive this vision of printable electronics forward, NanoDynamics has put together a team of experts globally acknowledged as leaders in the field of nanoscale metal powders, including Dr. Bruce Kahn of Rochester Institute of Technology, Dr. Dan Goia of Clarkson University and Michael Metz of Ames Goldsmith Corp. In addition, Greg Berube, the former Director of Technology at Ferro Electronic Materials Systems, has been brought on to lead NanoDynamics' nanosilver development and commercialization initiatives.

Beyond electronics, NanoDynamics is commercializing nanosilver to protect health and safety, including 20 nm silver particles that can be incorporated into house paint, for example, or coated onto ceramic tiles, medical instruments and even sheetrock to slow or stop the growth of potentially dangerous bacteria and fungi. Countertops, doorknobs, tables, and other surfaces can be contaminated by a wide variety of killer pathogens including e. coli, salmonella, the "bird flu" virus, and the ebola virus, to name just a few.

"In the past 20 years, molds and fungi have become a major health threat, primarily to the ever-increasing number of patients who have compromised immune systems and those receiving chemotherapy," said Mark Modzelewski, Vice President for Strategic Opportunities at NanoDynamics. "Fungal infections are the seventh leading cause of infection-related mortality. And consider the cost to treat these illnesses: the overall world market for antibacterials alone exceeds $24 billion. If we can intercept bacteria and fungi at their key sources, surfaces, we can potentially save billions of dollars in medical costs."

####

About NanoDynamics:
NanoDynamics is a diversified technology and manufacturing company utilizing nanoscale engineering to address some of the world's biggest challenges. With nanotechnology solutions ranging from energy, water processing, and personal and national security to medicine, electronics, advanced materials and consumer products, NanoDynamics is committed to delivering the Power of Nanotechnology(TM) to the global marketplace.

For more information, please click here.


Contact:
Antenna Group (for NanoDynamics)
Nathan Tinker
203-229-0358
nathan@antennagroup.com

Rosalind Jackson
415-977-1923
rosalind@antennagroup.com

Copyright © NanoDynamics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Products

STMicroelectronics Peps Up Booming Social-Fitness Scene with Smart Motion Sensors for Better Accuracy, Longer Battery Life, and Faster Time to Market January 2nd, 2017

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

STMicroelectronics’ Semiconductor Chips Contribute to Connected Toothbrush from Oral-B That Sees What You Don’t: Microcontroller and Accelerometer help brushers clean their teeth more effectively October 4th, 2016

Particle Works launches range of high quality magnetic nanoparticles August 31st, 2016

Possible Futures

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Nanomedicine

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Sensors

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Nanoelectronics

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Fast track control accelerates switching of quantum bits December 16th, 2016

GLOBALFOUNDRIES Demonstrates Industry-Leading 56Gbps Long-Reach SerDes on Advanced 14nm FinFET Process Technology: Proven ASIC IP solution will enable significant performance and power efficiency improvements for next-generation high-speed applications December 13th, 2016

Materials/Metamaterials

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Announcements

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Home

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Industrial Nanotech, Inc. Announces Plans to Spin Off New Product Line to Major Paint Compan November 9th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Industrial Nanotech, Inc. Provides Shareholder Update August 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project