Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Hula-Hoop Nanotechnique

Abstract:
Periodic nanostructures made of gold nanoparticles and long DNA strands with repeated sequences

Hula-Hoop Nanotechnique

Posted on April 02, 2006

Multifaceted DNA: in our bodies it carries our genetic information; in the hands of scientists it continues to reveal itself as the material of choice for nanotechnology. DNA is very stable and mechanically strong, and because of the specific base pairing in the double strand predictable structures are accessible. Canadian researchers led by Michael A. Brook and Yingfu Li have now successfully produced specific, periodic three-dimensional nanostructures from long single strands of DNA and gold nanoparticles. The researchers see nanocomputers, nanocircuits, and highly sensitive biosensors as potential areas of application.

The secret to their success is a DNA duplication technique known as “rolling circle amplification” or the “hula-hoop” technique. A ring of single-stranded DNA is used as the model, a special polymerase enzyme “reads” this model and builds the corresponding complementary strand. When this is complete, this type of polymerase, unlike ordinary polymerases, does not stop working. It is able to separate the fresh strand from the original and continues to copy the model again without interruption. This leads to long (theoretically infinitely long) single strands of DNA with a sequence of repeating patterns.

The team attached short DNA fragments to gold nanoparticles with a diameter of 15 nm. Tiny rings of DNA were then hooked on by way of specific base pairs and a hula-hoop-capable form of polymerase was added. That started it off: round and round the loop until long DNA chains hung from the little gold spheres. In order to demonstrate that these aggregates are good scaffolds for 3D structures, the researchers added smaller gold particles (5 nm diameter), each equipped with one short DNA segment. The sequence of these fragments was complementary to one region of the repeated sequence of the long DNA chains, so the fragments docked onto the larger structure. Because the pattern periodically repeats, the long DNA strands were now equipped with many little gold particles at regular intervals—like pearls on a necklace. The result is a periodic nanostructure.

“The construction and microstructure of such three-dimensional nano-entities can easily be controlled. Because DNA base pairing can also be broken up, these structures can be reversibly put together and taken apart again.” Brook and Li consider this to be one of the special advantages of their “nanoconstruction kit.”

####


Author: Yingfu Li, McMaster University, Hamilton (Canada), www.science.mcmaster.ca/biochem/faculty/li/index.htm

Title: DNA Polymerization on Gold Nanoparticles through Rolling Circle Amplification: Towards Novel Scaffolds for Three-Dimensional Periodic Nanoassemblies

Angewandte Chemie International Edition, 2006, 45, 2409, doi: 10.1002/anie.200600061

Contact:
Editorial office:
angewandte@wiley-vch.de

or David Greenberg (US)
dgreenbe@wiley.com

or Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Nanomedicine

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Sensors

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Electron 'spin control' of levitated nanodiamonds could bring advances in sensors, quantum information processing July 20th, 2016

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Nanoelectronics

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Materials/Metamaterials

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Announcements

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Nanometrics Reports Second Quarter 2016 Financial Results July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic