Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Carnegie Mellon Study Sets Benchmark Properties

March 30th, 2006

Carnegie Mellon Study Sets Benchmark Properties

Their study of regioregular polythiophenes (RRPs) establishes benchmark properties for these materials that suggest how to optimize their use for a new generation of diverse materials, including solar panels, transistors in radio frequency identification tags, and light-weight, flexible, organic light-emitting displays.

"Our tests showed that highly uniform RRPs self-assemble into well-defined elongated aggregates called nanofibrils, which stack one against the other," Kowalewski said. "About 5,000 of these nanofibrils would fit side by side in the width of a human hair. The presence of these well-defined structures allowed us for the first time to make a connection between the size of polymer molecules, the type of structure they form and the ease with which current can move through nanofibril aggregates."


Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Self Assembly

First multicellular organism inspires the design of better cancer drugs September 15th, 2016

A versatile method to pattern functionalized nanowires: A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of 'nanowires,' providing a new tool for the development of novel nanodevices September 9th, 2016

Location matters in the self-assembly of nanoclusters: Iowa State University scientists have developed a new formulation to explain an aspect of the self-assembly of nanoclusters on surfaces that has broad applications for nanotechnology September 8th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016


How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Scientists find technique to improve carbon superlattices for quantum electronic devices: In a paradigm shift from conventional electronic devices, exploiting the quantum properties of superlattices holds the promise of developing new technologies October 20th, 2016

Metamaterial uses light to control its motion October 10th, 2016

Core technology springs from nanoscale rods: Rice University lab turns nanorods into multistate switches with an electron beam October 10th, 2016


KaSAM-2016: International Conference on Material Sciences has successfully concluded in Pokhara of Western Nepal October 24th, 2016

Move over, solar: The next big renewable energy source could be at our feet October 20th, 2016

Smashing metallic cubes toughens them up: Rice University scientists fire micro-cubes at target to change their nanoscale structures October 20th, 2016

Study explains strength gap between graphene, carbon fiber: Rice University researchers simulate defects in popular fiber, suggest ways to improve it October 19th, 2016


The molecular mechanism that blocks membrane receptors has been identified: The work in which the Ikerbasque researcher of the Biofisika Institute Xabier Contreras has participated has been published in the journal Cell October 27th, 2016

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Chad Mirkin receives nanotechnology prize in Russia October 26th, 2016

Imaging where cancer drugs go in the body could improve treatment October 26th, 2016

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project