Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UC Santa Cruz researchers receive $1.6M grant

Abstract:
"The nanopore will act as a smart gate for entry of individual molecules into the channel of the waveguide"

UC Santa Cruz researchers receive $1.6 million grant for biosensor project

Posted on March 29, 2006

Researchers at the University of California, Santa Cruz, have received major funding from the National Institutes of Health to develop new sensor technology for biomedical applications. The project builds on earlier advances by UCSC researchers in optical and electrical sensing technologies and involves a broad interdisciplinary group of collaborators at UCSC and Brigham Young University.

Holger Schmidt, an associate professor of electrical engineering at UCSC, is principal investigator on the grant from the National Institute of Biomedical Imaging and Bioengineering, which will provide $1.6 million over four years for the sensor project.

"We aim to develop a new type of instrument that can do both electrical and optical sensing of single biomolecules, with all the components of the sensor ultimately integrated onto a chip," Schmidt said. "This would be the first device to provide both electrical and optical characterization of single molecules."

Potential applications for the new device include highly sensitive testing for medical diagnostics. It could also be a powerful tool for basic research in molecular biology.

In 2004, Schmidt and his coworkers reported the first demonstration of integrated optical waveguides with liquid cores. This technology, using the principle of antiresonant reflecting optical waveguides (ARROW), enables light propagation through tiny volumes of liquids on a chip. Since then, Schmidt has continued to work with Aaron Hawkins of Brigham Young University to optimize the properties of the liquid-core optical waveguides for use in sensor devices. The new project involves the collaboration of two other scientists at UCSC: David Deamer, professor of chemistry and biochemistry and acting chair of biomolecular engineering, and Harry Noller, Sinsheimer Professor of Molecular Biology.

Deamer has pioneered the development of nanopore devices for electrical sensing of single molecules. A nanopore is a tiny hole with dimensions on the order of nanometers (a nanometer is one billionth of a meter). Passage of a molecule through the hole generates a characteristic electrical signal. The team plans to integrate nanopores and liquid-core optical waveguides into the new sensor platform.

"The nanopore will act as a smart gate for entry of individual molecules into the channel of the waveguide," Schmidt said.

Noller is a leading authority on ribosomes, complex biomolecular machines that are the protein factories in all living cells. The researchers will use the new sensor platform to study individual ribosomes in action.

"In the integrated sensor, we will be able to study the ribosome without the need to immobilize it, so we hope to gain new understanding of how the ribosome works," Schmidt said.

The collaboration brings together researchers from three different departments at UCSC: the Departments of Electrical Engineering and Biomolecular Engineering, both in the Baskin School of Engineering, and the Department of Molecular, Cell, and Developmental Biology in the Division of Physical and Biological Sciences.

"This is a truly multidisciplinary collaboration," Schmidt said. "I am very excited about using integrated optics to investigate real problems in molecular biology."

####


Note to reporters: You may contact Schmidt at (831) 459-1482 or hschmidt@soe.ucsc.edu



Media Contact:
Tim Stephens
(831) 459-2495
stephens@ucsc.edu

Copyright © University of California, Santa Cruz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Investments/IPO's/Splits

Nanometrics to Participate in the 8th Annual CEO Investor Summit: Investor Event Held Concurrently with SEMICON West 2016 in San Francisco June 22nd, 2016

Artificial synapse rivals biological ones in energy consumption June 21st, 2016

NanoLabNL boosts quality of research facilities as Dutch Toekomstfonds invests firmly June 10th, 2016

Nanometrics Announces Upcoming Investor Events May 10th, 2016

Nanomedicine

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

Sensors

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Artificial synapse rivals biological ones in energy consumption June 21st, 2016

A new form of hybrid photodetectors with quantum dots and graphene June 19th, 2016

Drum beats from a one atom thick graphite membrane June 15th, 2016

Announcements

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic