Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UC Santa Cruz researchers receive $1.6M grant

Abstract:
"The nanopore will act as a smart gate for entry of individual molecules into the channel of the waveguide"

UC Santa Cruz researchers receive $1.6 million grant for biosensor project

Posted on March 29, 2006

Researchers at the University of California, Santa Cruz, have received major funding from the National Institutes of Health to develop new sensor technology for biomedical applications. The project builds on earlier advances by UCSC researchers in optical and electrical sensing technologies and involves a broad interdisciplinary group of collaborators at UCSC and Brigham Young University.

Holger Schmidt, an associate professor of electrical engineering at UCSC, is principal investigator on the grant from the National Institute of Biomedical Imaging and Bioengineering, which will provide $1.6 million over four years for the sensor project.

"We aim to develop a new type of instrument that can do both electrical and optical sensing of single biomolecules, with all the components of the sensor ultimately integrated onto a chip," Schmidt said. "This would be the first device to provide both electrical and optical characterization of single molecules."

Potential applications for the new device include highly sensitive testing for medical diagnostics. It could also be a powerful tool for basic research in molecular biology.

In 2004, Schmidt and his coworkers reported the first demonstration of integrated optical waveguides with liquid cores. This technology, using the principle of antiresonant reflecting optical waveguides (ARROW), enables light propagation through tiny volumes of liquids on a chip. Since then, Schmidt has continued to work with Aaron Hawkins of Brigham Young University to optimize the properties of the liquid-core optical waveguides for use in sensor devices. The new project involves the collaboration of two other scientists at UCSC: David Deamer, professor of chemistry and biochemistry and acting chair of biomolecular engineering, and Harry Noller, Sinsheimer Professor of Molecular Biology.

Deamer has pioneered the development of nanopore devices for electrical sensing of single molecules. A nanopore is a tiny hole with dimensions on the order of nanometers (a nanometer is one billionth of a meter). Passage of a molecule through the hole generates a characteristic electrical signal. The team plans to integrate nanopores and liquid-core optical waveguides into the new sensor platform.

"The nanopore will act as a smart gate for entry of individual molecules into the channel of the waveguide," Schmidt said.

Noller is a leading authority on ribosomes, complex biomolecular machines that are the protein factories in all living cells. The researchers will use the new sensor platform to study individual ribosomes in action.

"In the integrated sensor, we will be able to study the ribosome without the need to immobilize it, so we hope to gain new understanding of how the ribosome works," Schmidt said.

The collaboration brings together researchers from three different departments at UCSC: the Departments of Electrical Engineering and Biomolecular Engineering, both in the Baskin School of Engineering, and the Department of Molecular, Cell, and Developmental Biology in the Division of Physical and Biological Sciences.

"This is a truly multidisciplinary collaboration," Schmidt said. "I am very excited about using integrated optics to investigate real problems in molecular biology."

####


Note to reporters: You may contact Schmidt at (831) 459-1482 or hschmidt@soe.ucsc.edu



Media Contact:
Tim Stephens
(831) 459-2495
stephens@ucsc.edu

Copyright © University of California, Santa Cruz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Investments/IPO's/Splits

Arrowhead to Present at 2015 RBC Capital Markets' Global Healthcare Conference February 17th, 2015

Iran 1st among Islamic Nations in Scientific Production, Nanotechnology February 16th, 2015

Harris & Harris Group Portfolio Company D-Wave Systems Raises an Additional $29 Million (CAD), Closing 2014 Financing at $62 Million (CAD) February 2nd, 2015

Malaysian Nanotechnology Company Nanopac Innovation Ltd. lists on the NSX January 19th, 2015

Nanomedicine

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution February 24th, 2015

Sensors

Penn researchers develop new technique for making molybdenum disulfide: Extra control over monolayer material with advantages over graphene February 19th, 2015

Researchers build atomically thin gas and chemical sensors: Sensors made of molybdenum disulfide are small, thin and have a high level of selectivity when detecting gases and chemicals February 19th, 2015

Production of Biosensor in Iran to Detect Oxalic Acid February 18th, 2015

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Announcements

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE