Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > HENCI Technology Revolutionizes Ex-Situ Nanocatalysis

Abstract:
HENCI technology completely immobilizes and retains nano-particles /structures / catalysts in fluid flow in a fundamentally new way, resulting in fluid dynamic, mass-transport, and process-cost efficiencies much greater than conventional methods, unleashing, for the first time ever, the immense potential of nano-structures for dozens of previously impractical large-scale ex-situ applications.

HENCI Technology Revolutionizes Ex-Situ Nanocatalysis

Posted on March 24, 2006

The New High Efficiency Nano-Catalyst Immobilization (HENCI) technology by Cross Technologies is unleashing, for the first time ever, the immense potential of nanocatalysis for large-scale Groundwater Remediation (GWR): to treat recalcitrant carcinogen-contaminated groundwater (often to potable quality) on-demand, at any throughput, in a small, inexpensive, well-head / point-of-distribution / mobile unit, by eliminating carcinogenics altogether (chemically breaking them down into benign species, not simply trapping them in a medium, concentrating them in an effluent or evaporating them to our air). With process-cost efficiencies literally orders of magnitude greater than conventionally available technologies, HENCI facilitates the use of nano-catalysts (NCs) in a completely new way, opening the flood-gates for the application of nanotechnology to environmental and industrial nano-catalytic and -sorbtive processes.

The new genres of nano-sized catalysts are very exciting. When polluted water is exposed to them, rapid and complete catalytic destruction, i.e. chemical breakdown to benign species, of at least 40 recalcitrant carcinogenic groundwater pollutants has been shown to take place. Pollutants include chlorinated alkanes, alkenes and aromatics, THMs, DDT, Lidane, PCBs, Dioxins, TNT, NDMA, Organic Dyes, dichromates, perchlorate, pharmaceutical residuals, and others of immediate concern, many on the EPA-'Hotlist' (section 307, CWA). Hence, the desire to use highly effective NCs for various large-scale ground water remediation (GWR) applications is well established. However, the attribute most important to their high-efficacy - their nano-scale size - is also their Achilles' heel, and has greatly inhibited their commercialization via both in-situ and ex-situ operation. Why? Firstly, no method for in-situ use of NCs has proven truly viable, including sub-surface injection, reactive barriers, or in-situ surface treatment (NCs added to surface-storage tanks to break down pollutants before water is used). This is because most NCs are themselves toxic, so any in-situ use necessitates that, after exposure, all the NCs, in turn, be completely removed from the treated water prior to use. Because these particles are so small (and numerous), high-performance R.O./Nano-filtration is usually required to accomplish such removal, rendering the overall operation much too expensive.

Thus, on-demand ex-situ use of NCs has been proposed as a superior alternative because it eliminates the need for post-reaction removal of the NCs by 'immobilizing' them (usually on or within a support media) - preventing them from entering into solution in the treated water in the first place. As such, ex-situ operation is theoretically conducive to more-efficient 'continuous' processing, e.g. in a flow-through reactor. Until HENCI, however, no immobilization technology was even close to being viable for field application, as all fell short of meeting the seven formidable engineering challenges / criteria necessary for cost-effective immobilization NCs for any practical applications:

  1. Complete Immobilization - no undesired release of nano-particles.
  2. Ultra-high Particle Loading Densities within the reactor to fully exploit their high SA/mass ratios, or over about 25x1015 particles per cubic inch of reactor volume.
  3. High Mass-transport Efficiency
    1. Micro-homogeneity - particles are immobilized in an evenly spaced, three-dimensional mono-dispersion through which the untreated water flows, exploiting NC's extremely high reactive surface area.
    2. No Particle Surface Coverage -100% of each catalyst particles' surface area is directly exposed to reactant
  4. High Momentum-transport Efficiency - high linear velocities with ultra-small pressure drops.
  5. Complete Scalability to commercial-volume treatment w/ >99.999% conversion efficiency of even ppb-level pollutants.
  6. Low Cap. & Op. costs: no expensive media or polluted effluent disposal issues; ambient operation, no moving parts
  7. Potential for quick regulatory-agency acceptance - safe, easily-controlled operation, no add'l contact materials

HENCI-facilitated nanocatalysis meets all these criteria, and is thus uniquely poised to usher in a new era in GWR marked by our ability to easily process polluted groundwaters to potable quality with a true leap in environmental benevolence, let alone the benefits to be reaped in commercial applications.

####


Contact:
Ken Cross
760-944-9778
crosstechnologies@adelphia.net

Copyright Cross Technologies

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Products

Oxford Nanoimaging to provide desktop super-resolution microscopes May 10th, 2016

Abalonyx launches Reduced Graphene Oxide Product: Abalonyx has successfully scaled up production of thermally reduced graphene oxide (rGO) in its Tofte, Norway, production facility. This product is now offered to customers in Kg-quantities May 10th, 2016

New Generation of Graphene Reinforced Carbon Fibre Prepreg Products March 14th, 2016

New Generation of Graphene Reinforced Carbon Fibre Prepreg Products March 10th, 2016

Announcements

A 'smart dress' for oil-degrading bacteria July 24th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

New probe developed for improved high resolution measurement of brain temperature: Improved accuracy could allow researchers to measure brain temperature in times of trauma when small deviations in temperature can lead to additional brain injury July 23rd, 2016

Water

Electricity generated with water, salt and a 3-atoms-thick membrane: EPFL researchers have developed a system that generates electricity from osmosis with unparalleled efficiency. Their work, featured in Nature, uses seawater, fresh water, and a new type of membrane just 3 atoms July 15th, 2016

Bouncing droplets remove contaminants like pogo jumpers: Researchers at Duke University and the University of British Columbia are exploring whether surfaces can shed dirt without being subjected to fragile coatings July 7th, 2016

Mille-feuille-filter removes viruses from water May 19th, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic