Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Understanding heat flow at the nanoscale

Abstract:
The grant is worth more than $400,000 and is the National Science Foundation's most prestigious award for creative junior faculty

Understanding heat flow at the nanoscale is the goal of Virginia Tech/NSF CAREER project

Blacksburg, VA | Posted on March 17, 2006

Understanding the mechanisms responsible for thermal transport, or heat flow, between dissimilar materials at the molecular level is the goal of Virginia Tech College of Engineering researcher Scott Huxtable, who has received a National Science Foundation Faculty Early Career Development Program (CAREER) Award.

Huxtable, an assistant professor of mechanical engineering, recently secured the five-year CAREER grant, which is worth more than $400,000 and is the National Science Foundation's most prestigious award for creative junior faculty who are considered likely to become academic leaders of the future.

Huxtable will use laser techniques - timed by the picosecond, or one-trillionth of a second - to determine at the nanoscale how heat is transferred across the boundary between two materials. A primary focus of his project will be discovering what types of chemical modifications can be made to the surfaces of materials to control the flow of heat.

Understanding heat flow at this level could help engender the design of nanostructured composite materials capable of controlling thermal conductivity. "This research could impact a wide variety of technologies," said Huxtable, who began studying nanoscale thermal transport as a graduate student at the University of California at Berkeley.

One example would be improved design of thermoelectric coolers, which offer distinct advantages over conventional refrigerators and other cooling devices: they have no moving parts to break down and do not use harmful chemicals, such as ozone-depleting CFCs. However, thermoelectric devices are still highly inefficient. Better control of thermal conductivity could lead to the development of high-efficiency coolers.

Managing the tremendous amount of heat generated by power electronics is another anticipated result of thermal transport research. "A severe side-effect of the continual miniaturization of power electronics devices, including computers and cell phones, is a dramatic increase in the heat generated," Huxtable said. "This is becoming the limiting factor in device performance." Controlling thermal transport at the nanoscale could help minimize the problem.

Composite materials design could also get a boost. The tiles on the exterior of the Space Shuttle, for example, must be made from insulating materials capable of extremely low thermal conductivity. "The engineering community is always trying to create materials with properties at the thermal extremes," Huxtable said. "Nanostructured materials are a new approach to achieving both high and low conductivity composites."

Every CAREER project includes an educational component and Huxtable's is twofold. In a partnership with the Young Scholars Program in Utica, N.Y., which provides tutoring for underprivileged students from area high schools, he plans to bring two students to his lab each year "for a summer of research and learning. These students will be mentored in hopes that they will be motivated to attend college and to pursue degrees in science or engineering." He also is developing a new course on nanoengineering to teach at Virginia Tech.

Huxtable received his bachelor's degree from Bucknell University and his master's and Ph.D. from the University of California at Berkeley. He conducted post-doctoral research in materials science, focusing on thermal transport, at the University of Illinois at Urbana-Champaign before joining the Virginia Tech faculty in 2003.

####
Contacts:
Liz Crumbley
(540)231-9772
lcrumb@vt.edu

Copyright © Virginia Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Investments/IPO's/Splits

Evident Thermoelectrics Acquires GMZ Energy: Investment Accelerates Launch Of Evident's Thermoelectric Modules For Waste Heat May 20th, 2015

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

PEN Inc. Announces First Quarter Financial Results: Investor Webcast and Business Update Set for May 21, 1 pm EDT May 13th, 2015

Harris & Harris Group Portfolio Company OpGen Raises $17.1 Million in Initial Public Offering May 6th, 2015

Materials/Metamaterials

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Announcements

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project