Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > nGimat Patents for Electronic and Optical Materials/Devices

Abstract:
nGimat announces patents covering fundamental compositions of matter and methods as well as new tunable capacitors for nGimat-designed components expected to be used in commercial and military wireless equipment

nGimat Patents for Electronic and Optical Materials/Devices

Atlanta, GA | Posted on February 13, 2006

nGimat Co. announced today the recent issuances of two U.S. patents (Nos. 6,975,500 and 6,986,955) as well as a foreign patent (GB2411661). These patents cover fundamental compositions of matter and methods as well as new tunable capacitors for nGimat-designed components expected to be used in commercial and military wireless equipment. Such components include tunable filters and phase shifters. These components are designed to allow future homeland security communications handsets to tune to multiple frequency bands as well as provide increased security of transmitted signals by beam direction. In addition, these components are anticipated to be substantially less expensive than what is currently being produced.

nGimat’s U.S. Patent No. 6,986,955, entitled “Electronic and Optical Materials,” is directed to thin films of barium strontium titanate deposited on a sapphire substrate, including C-plane sapphire. The crystalline structure of the thin films is epitaxial or near-epitaxial. Barium strontium titanate (“BST”) has properties that are particularly suitable for a variety of electronic and optical applications. Significantly, properties, such as refractive index and dielectric constant, of BST are tunable by application of a biasing electrical field. The very thin films of the invention have important promise for miniaturized electronic and electrooptical devices.

nGimat’s US Patent No. 6,975,500, entitled “Capacitor Having Improved Electrodes,” is directed to multi-layer tunable capacitors of specific configuration, including several layers. They are formed from dielectric material that has one or more discrete electrodes, each electrode being exposed to at least two thicknesses. These electrodes are surrounded by wider insulative material such that the material can be patterned into capacitors having specific values. The thin dielectric can be a tunable material so that the capacitance can be varied by adding thin electrodes that interact with direct current.

nGimat’s British Patent No. GB 2 411 611, entitled “Variable Capacitors, Composite Materials,” is directed to materials used in forming variable capacitors that can be tuned by a biasing voltage. The variable capacitors are formed from novel nanoparticles and composite materials. The invention is a method of producing nanoparticulates of elemental metal as well as a method of depositing at least a monolayer of metal nanoparticles on a substrate.

####

About nGimat:
nGimat Co. is a cost-effective manufacturer and innovator of engineered nanomaterials in the following areas: nanopowders, thin films and devices. nGimat's Combustion Chemical Vapor Deposition (CCVD) and NanoSpraySM Processes along with its Nanomiser® Device enable synthesis of nanoparticles and thin films.

For more information, please click here.

Contact:
Sandra Moreland
404-851-1535
sandra@morelandgroup.net

Copyright © nGimat

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanoelectronics

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Future computers could be built from magnetic 'tornadoes' October 14th, 2014

Materials/Metamaterials

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Announcements

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Patents/IP/Tech Transfer/Licensing

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

Aculon Receives Patent for Application of Enhanced Bonding Layers on Titanium October 9th, 2014

harmaEngine will join Nanobiotix’ pivotal trial for NBTXR3 in Soft Tissue Sarcoma to accelerate its development in Asia-Pacific: PharmaEngine to make milestone payment to Nanobiotix in October 2014 to recognize the value created October 8th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Homeland Security

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

Seeking Nanoscale Defenses for Biological and Chemical Threats: WPI co-organizes a NATO workshop to improve the detection and decontamination of biological and chemical agents September 13th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE