Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > nGimat Patents for Electronic and Optical Materials/Devices

Abstract:
nGimat announces patents covering fundamental compositions of matter and methods as well as new tunable capacitors for nGimat-designed components expected to be used in commercial and military wireless equipment

nGimat Patents for Electronic and Optical Materials/Devices

Atlanta, GA | Posted on February 13, 2006

nGimat Co. announced today the recent issuances of two U.S. patents (Nos. 6,975,500 and 6,986,955) as well as a foreign patent (GB2411661). These patents cover fundamental compositions of matter and methods as well as new tunable capacitors for nGimat-designed components expected to be used in commercial and military wireless equipment. Such components include tunable filters and phase shifters. These components are designed to allow future homeland security communications handsets to tune to multiple frequency bands as well as provide increased security of transmitted signals by beam direction. In addition, these components are anticipated to be substantially less expensive than what is currently being produced.

nGimat’s U.S. Patent No. 6,986,955, entitled “Electronic and Optical Materials,” is directed to thin films of barium strontium titanate deposited on a sapphire substrate, including C-plane sapphire. The crystalline structure of the thin films is epitaxial or near-epitaxial. Barium strontium titanate (“BST”) has properties that are particularly suitable for a variety of electronic and optical applications. Significantly, properties, such as refractive index and dielectric constant, of BST are tunable by application of a biasing electrical field. The very thin films of the invention have important promise for miniaturized electronic and electrooptical devices.

nGimat’s US Patent No. 6,975,500, entitled “Capacitor Having Improved Electrodes,” is directed to multi-layer tunable capacitors of specific configuration, including several layers. They are formed from dielectric material that has one or more discrete electrodes, each electrode being exposed to at least two thicknesses. These electrodes are surrounded by wider insulative material such that the material can be patterned into capacitors having specific values. The thin dielectric can be a tunable material so that the capacitance can be varied by adding thin electrodes that interact with direct current.

nGimat’s British Patent No. GB 2 411 611, entitled “Variable Capacitors, Composite Materials,” is directed to materials used in forming variable capacitors that can be tuned by a biasing voltage. The variable capacitors are formed from novel nanoparticles and composite materials. The invention is a method of producing nanoparticulates of elemental metal as well as a method of depositing at least a monolayer of metal nanoparticles on a substrate.

####

About nGimat:
nGimat Co. is a cost-effective manufacturer and innovator of engineered nanomaterials in the following areas: nanopowders, thin films and devices. nGimat's Combustion Chemical Vapor Deposition (CCVD) and NanoSpraySM Processes along with its Nanomiser® Device enable synthesis of nanoparticles and thin films.

For more information, please click here.

Contact:
Sandra Moreland
404-851-1535
sandra@morelandgroup.net

Copyright © nGimat

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanoelectronics

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Materials/Metamaterials

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Lonely atoms, happily reunited July 29th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Announcements

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Lonely atoms, happily reunited July 29th, 2016

Patents/IP/Tech Transfer/Licensing

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

New nanoscale technologies could revolutionize microscopes, study of disease July 20th, 2016

Homeland Security

New method can identify chemical warfare agents more easily: The method could help governments protect people from horrifying toxic effects July 15th, 2016

Researchers harness DNA as the engine of super-efficient nanomachine: New platform detects traces of everything from bacteria to viruses, cocaine and metals July 10th, 2016

Electronic nose smells pesticides and nerve gas July 6th, 2016

Wireless, wearable toxic-gas detector: Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents July 4th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic