Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > nGimat Patents for Electronic and Optical Materials/Devices

Abstract:
nGimat announces patents covering fundamental compositions of matter and methods as well as new tunable capacitors for nGimat-designed components expected to be used in commercial and military wireless equipment

nGimat Patents for Electronic and Optical Materials/Devices

Atlanta, GA | Posted on February 13, 2006

nGimat Co. announced today the recent issuances of two U.S. patents (Nos. 6,975,500 and 6,986,955) as well as a foreign patent (GB2411661). These patents cover fundamental compositions of matter and methods as well as new tunable capacitors for nGimat-designed components expected to be used in commercial and military wireless equipment. Such components include tunable filters and phase shifters. These components are designed to allow future homeland security communications handsets to tune to multiple frequency bands as well as provide increased security of transmitted signals by beam direction. In addition, these components are anticipated to be substantially less expensive than what is currently being produced.

nGimat’s U.S. Patent No. 6,986,955, entitled “Electronic and Optical Materials,” is directed to thin films of barium strontium titanate deposited on a sapphire substrate, including C-plane sapphire. The crystalline structure of the thin films is epitaxial or near-epitaxial. Barium strontium titanate (“BST”) has properties that are particularly suitable for a variety of electronic and optical applications. Significantly, properties, such as refractive index and dielectric constant, of BST are tunable by application of a biasing electrical field. The very thin films of the invention have important promise for miniaturized electronic and electrooptical devices.

nGimat’s US Patent No. 6,975,500, entitled “Capacitor Having Improved Electrodes,” is directed to multi-layer tunable capacitors of specific configuration, including several layers. They are formed from dielectric material that has one or more discrete electrodes, each electrode being exposed to at least two thicknesses. These electrodes are surrounded by wider insulative material such that the material can be patterned into capacitors having specific values. The thin dielectric can be a tunable material so that the capacitance can be varied by adding thin electrodes that interact with direct current.

nGimat’s British Patent No. GB 2 411 611, entitled “Variable Capacitors, Composite Materials,” is directed to materials used in forming variable capacitors that can be tuned by a biasing voltage. The variable capacitors are formed from novel nanoparticles and composite materials. The invention is a method of producing nanoparticulates of elemental metal as well as a method of depositing at least a monolayer of metal nanoparticles on a substrate.

####

About nGimat:
nGimat Co. is a cost-effective manufacturer and innovator of engineered nanomaterials in the following areas: nanopowders, thin films and devices. nGimat's Combustion Chemical Vapor Deposition (CCVD) and NanoSpraySM Processes along with its Nanomiser® Device enable synthesis of nanoparticles and thin films.

For more information, please click here.

Contact:
Sandra Moreland
404-851-1535
sandra@morelandgroup.net

Copyright © nGimat

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanoelectronics

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Materials/Metamaterials

Aculon Hires New Business Development Director December 19th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Graphene Applied in Production of Recyclable Electrodes December 13th, 2014

Announcements

New non-invasive method can detect Alzheimer's disease early: MRI probe technology shows brain toxins in living animals for first time December 22nd, 2014

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Quantum physics just got less complicated December 22nd, 2014

Enzyme Biosensor Used for Rapid Measurement of Drug December 22nd, 2014

Patents/IP/Tech Transfer/Licensing

New non-invasive method can detect Alzheimer's disease early: MRI probe technology shows brain toxins in living animals for first time December 22nd, 2014

Silicon Valley-Based Foresight Valuation Launches STR-IP™, a New Initiative for Startups to Discover the Value of Their Intellectual Property December 18th, 2014

Chemists Fabricate Novel Rewritable Paper: An attractive alternate to regular paper, UC Riverside-developed technology helps address increasing problems in environment and resource sustainability December 2nd, 2014

Dicerna Announces License Agreement with Tekmira to Advance Dicerna’s PH1 Development Program November 17th, 2014

Homeland Security

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Laser sniffs out toxic gases from afar: System can ID chemicals in the atmosphere from a kilometer away December 4th, 2014

Better bomb-sniffing technology: University of Utah engineers develop material for better detectors November 4th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE