Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > nGimat Patents for Electronic and Optical Materials/Devices

Abstract:
nGimat announces patents covering fundamental compositions of matter and methods as well as new tunable capacitors for nGimat-designed components expected to be used in commercial and military wireless equipment

nGimat Patents for Electronic and Optical Materials/Devices

Atlanta, GA | Posted on February 13, 2006

nGimat Co. announced today the recent issuances of two U.S. patents (Nos. 6,975,500 and 6,986,955) as well as a foreign patent (GB2411661). These patents cover fundamental compositions of matter and methods as well as new tunable capacitors for nGimat-designed components expected to be used in commercial and military wireless equipment. Such components include tunable filters and phase shifters. These components are designed to allow future homeland security communications handsets to tune to multiple frequency bands as well as provide increased security of transmitted signals by beam direction. In addition, these components are anticipated to be substantially less expensive than what is currently being produced.

nGimat’s U.S. Patent No. 6,986,955, entitled “Electronic and Optical Materials,” is directed to thin films of barium strontium titanate deposited on a sapphire substrate, including C-plane sapphire. The crystalline structure of the thin films is epitaxial or near-epitaxial. Barium strontium titanate (“BST”) has properties that are particularly suitable for a variety of electronic and optical applications. Significantly, properties, such as refractive index and dielectric constant, of BST are tunable by application of a biasing electrical field. The very thin films of the invention have important promise for miniaturized electronic and electrooptical devices.

nGimat’s US Patent No. 6,975,500, entitled “Capacitor Having Improved Electrodes,” is directed to multi-layer tunable capacitors of specific configuration, including several layers. They are formed from dielectric material that has one or more discrete electrodes, each electrode being exposed to at least two thicknesses. These electrodes are surrounded by wider insulative material such that the material can be patterned into capacitors having specific values. The thin dielectric can be a tunable material so that the capacitance can be varied by adding thin electrodes that interact with direct current.

nGimat’s British Patent No. GB 2 411 611, entitled “Variable Capacitors, Composite Materials,” is directed to materials used in forming variable capacitors that can be tuned by a biasing voltage. The variable capacitors are formed from novel nanoparticles and composite materials. The invention is a method of producing nanoparticulates of elemental metal as well as a method of depositing at least a monolayer of metal nanoparticles on a substrate.

####

About nGimat:
nGimat Co. is a cost-effective manufacturer and innovator of engineered nanomaterials in the following areas: nanopowders, thin films and devices. nGimat's Combustion Chemical Vapor Deposition (CCVD) and NanoSpraySM Processes along with its Nanomiser® Device enable synthesis of nanoparticles and thin films.

For more information, please click here.

Contact:
Sandra Moreland
404-851-1535
sandra@morelandgroup.net

Copyright © nGimat

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanoelectronics

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Materials/Metamaterials

SouthWest NanoTechnologies Introduces AgeNT™ Transparent Conductor System at SID Display Week, Booth #543 May 28th, 2015

Physicists precisely measure interaction between atoms and carbon surfaces May 28th, 2015

Linking superconductivity and structure May 28th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Announcements

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Patents/IP/Tech Transfer/Licensing

SouthWest NanoTechnologies Introduces AgeNT™ Transparent Conductor System at SID Display Week, Booth #543 May 28th, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Novel superconducting undulator provides first x-ray light at ANKA May 1st, 2015

Long Island Capital Alliance Announces Participants for Brookhaven National Laboratory Technology Transfer Capital Forum on May 8: Keynote Speaker Dr. Doon Gibbs, Director of Brookhaven National Laboratory April 16th, 2015

Homeland Security

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Optics, nanotechnology combined to create low-cost sensor for gases April 3rd, 2015

The Universitat Politècnica de València is coordinating a European project to develop a device for the quick and early diagnosis of cancer March 7th, 2015

Detecting chemical weapons with a color-changing film January 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project