Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Titania nanotubes create potentially efficient solar cells

Abstract:
New focus in solar cells is toward dye sensitive solar cells, which have been made using nanoparticles and a variety of dyes

Titania nanotubes create potentially efficient solar cells

University Park, PA | Posted on February 08, 2006

A solar cell, made of titania nanotubes and natural dye, may be the answer to making solar electricity production cost-effective, according to a Penn State researcher.

"Solar cell technology has not changed very much over time and is still predominantly silicon solar cells," says Dr. Craig Grimes, professor of electrical engineering and materials science and engineering. "It takes a great deal of energy, 5 gigajoules per square meter, to make silicon solar cells. It can be argued that silicon solar cells never fully recover the energy it takes to make them in the first place."

The new focus in solar cells is toward dye sensitive solar cells, which have been made using nanoparticles and a variety of dyes.

"Nanoparticle solar cells are the gold standard of this new approach," says Grimes. "However, because of limitations, it appears they have gotten as good as they are going to get."

The researchers are instead looking at titania nanotubes to replace the particulate coatings in dye sensitive solar cells and, their initial attempt produced about 3 percent conversion of solar energy to electricity, they report in today's issue of Nano Letters. The researcher's inability to grow longer titania nanotubes, constrained the solar conversion rate.

"I think we can reach a 15 percent conversion rate with these cells, and other researchers do as well," says Grimes. "That is 15 percent with a relatively easy fabrication system that is commercially viable."

Conventional solar cells are made from blocks of slowly made silicon boules that are sliced into wafers. Grimes and his team use an easier approach. They coat a piece of glass with a fluorine-doped tin oxide and then sputter on a layer of titanium. The researchers can currently lay down a 500-nanometer thick titanium layer. They then anodize the layer by placing it in an acidic bath with a mild electric current and titanium dioxide nanotube arrays grow to about 360 nanometers. The tubes are then heated in oxygen so that they crystalize. The process turns the opaque coating of titanium into a transparent coating of nanotubes.

This nanotube array is then coated in a commercially available dye. The dye-coated nanotubes make up the negative electrode and a positive electrode seals the cell which contains an iodized electrolyte. When sun shines through the glass, the energy falls on the dye molecules and an electron is freed. If this electron and others make their way out of the tube to the negative electrode, a current flows. Many electrons do not and are recombined, but the tube structure of the titanium dioxide allows an order of magnitude more electrons to make it to the electrode than with particulate coatings.

"There is still a great deal of optimization of the design that needs to be done," says Grimes. "Now, with the help of the Pennsylvania Energy Development Authority, we will have equipment to make high quality titanium coatings that are thicker. If we get about 3 percent conversion with 360 nanometers, what we could get with 4 microns is an exciting question we soon hope to answer."

The thickness of the titanium layer constrains the height of the nanotubes.With thicker initial coatings, longer tubes would produce more electrons that do not recombine, producing more electricity.

Other aspects of the titania nanotube dye sensitive solar cells that need to be optimized include the thickness of the cells. Currently, spacers separate the two layers and provide internal support. These spacers are 25 microns thick. If the spacers could be made as sturdy, but shorter, there would be less of a distance for the electrons to travel and more electrons will make it across the electrodes.

Grimes team includes Dr. Gopal K. Mor, Dr. Maggie Paulose and Dr. Oomman K. Varghese, postdoctoral researchers in Penn State's Materials Research Institute, and Karthik Shankar, graduate student in electrical engineering. The National Science Foundation supported this work and a recent grant from the U.S. Department of Energy will help optimize the solar cells.

####
Contact:
A'ndrea Messer
aem1@psu.edu
live.psu.edu
814-865-9481

Vicki Fong
vfong@psu.edu
live.psu.edu
814-865-9481

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

A drop of water as a model for the interplay of adhesion and stiction June 30th, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Nanotubes/Buckyballs/Fullerenes

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

Announcements

A drop of water as a model for the interplay of adhesion and stiction June 30th, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Energy

Yale researchersí technology turns wasted heat into power June 27th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEIís QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic