Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Caltech Researchers Achieve First Electrowetting of Carbon Nanotubes

Abstract:
Researchers from the California Institute of Technology have succeeded in forcing liquid mercury into carbon nanotubes

Caltech Researchers Achieve First Electrowetting of Carbon Nanotubes

Pasadena, CA | Posted on December 05, 2005

If you can imagine the straw in your soda can being a million times smaller and made of carbon, you pretty much have a mental picture of a carbon nanotube. Scientists have been making them at will for years, but have never gotten the nanotubes to suck up liquid metal to form tiny wires. In fact, conventional wisdom and hundreds of refereed papers say that such is not even possible.

Now, with the aid of an 1875 study of mercury's electrical properties, researchers from the California Institute of Technology have succeeded in forcing liquid mercury into carbon nanotubes. Their technique could have important applications, including nanolithography, the production of nanowires with unique quantum properties, nano-sized plumbing for the transport of extremely small fluid quantities, and electronic circuitry many times smaller than the smallest in existence today.

Reporting in the December 2 issue of the journal Science, Caltech assistant professor of chemistry Patrick Collier and associate professor of chemical engineering Konstantinos Giapis describe their success in electrowetting carbon nanotubes. By "electrowetting" they mean that the voltage applied to a nanotube immersed in mercury causes the liquid metal to rise into the nanotube by capillary action and cling to the surface of its inner wall.

Besides its potential for fundamental research and commercial applications, Giapis says that the result is an opportunity to set the record straight. "We have found that when measuring the properties of carbon nanotubes in contact with liquid metals, researchers need to take into account that the application of a voltage can result in electrically activated wetting of the nanotube.

"Ever since carbon nanotubes were discovered in 1991, people have envisioned using them as molds to make nanowires or as nanochannels for flowing liquids. The hope was to have the nanotubes act like molecular straws," says Giapis.

However, researchers never got liquid metal to flow into the straws, and eventually dismissed the possibility that metal could even do so because of surface tension. Mercury was considered totally unpromising because, as anyone knows who has played with liquid mercury in chemistry class, a glob will roll around a desktop without wetting anything it touches.

"The consensus was that the surface tension of metals was just too high to wet the walls of the nanotubes," adds Collier, the co-lead author of the paper. This is not to say that researchers have never been able to force anything into a nanotube: in fact, they have, albeit by using more complex and less controllable ways that have always led to the formation of discontinuous wires.

Collier and Giapis enter the picture because they had been experimenting with coating nanotubes with an insulator in order to create tiny probes for future medical and industrial applications. In attaching nanotubes to gold-coated atomic force microscope tips to form nanoprobes, they discovered that the setup provided a novel way of making liquid mercury rise in the tubes by capillary action.

Casting far beyond the nanotube research papers of the last decade, the researchers found an 1875 study by Nobel Prize-winning physicist Gabriel Lippmann that described in detail how the surface tension of mercury is altered by the application of an electrical potential. Lippmann's 1875 paper provided the starting point for Collier and Giapis to begin their electrowetting experiments.

After mercury entered the nanotubes with the application of a voltage, the researchers further discovered that the mercury rapidly escaped from the nanotubes immediately after the voltage was turned off. "This effect made it very difficult to provide hard proof that electrowetting occurred," Collier said. In the end, persistence and hard work paid off as the results in the Science paper demonstrate.

Giapis and Collier think that they will be able to drive various other metals into the nanotubes by employing the process at higher temperature. They hope to be able to freeze the metal nanowires in the nanotubes so that they remain intact when the voltage is turned off.

"We can pump mercury at this point, but it's possible that you could also pump nonmetallic liquids," Giapis says. "So we now have a way of pumping fluids controllably that could lead to nanofluidic devices. We envision making nano-inkjet printers that will use metal ink to print text and circuitry with nanometer precision. These devices could be scaled up to operate in a massively parallel manner. "

The paper is titled "Electrowetting in Carbon Nanotubes." In addition to Collier and Giapis, the other authors are Jinyu Chen, a postdoctoral scholar in chemistry, and Aleksandr Kutana, a postdoctoral scholar in chemical engineering.

####
Contact:
Robert Tindol
(626) 395-3631
tindol@caltech.edu

Copyright Caltech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Nanotubes/Buckyballs/Fullerenes

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Revolutionary MIT-Developed Nanotechnology Company Showcases at CAMX in Dallas August 20th, 2015

Engineering a better 'Do: Purdue researchers are learning how August 4th, 2015

Announcements

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic