Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Road to greener chemistry paved with nano-gold

Abstract:
Nature article says gold catalysts achieve cleaner, more efficient oxidation

Road to greener chemistry paved with nano-gold, researchers report

October 28, 2005

Breakthrough could "transform" chemical industry, which uses chlorine or organic peroxides in most oxidation processes. Gold nanoparticles effect insertion of oxygen atoms at selected locations along hydrocarbon molecule chains. Electron microscopy helps ensure the particles are distributed evenly over a large surface area support and prevented from coalescing. The nano-catalysts can be fine-tuned with occasional atoms of bismuth.

The selective oxidation processes that are used to make compounds contained in agrochemicals, pharmaceuticals and other chemical products can be accomplished more cleanly and more efficiently with gold nanoparticle catalysts, researchers have reported in Nature magazine.

A team of 13 U.K. researchers and one U.S. researcher reported in the Oct. 20 issue of the British journal that the carbon-supported gold catalysts can be fine-tuned with high selectivity for desired products through the addition of trace amounts of bismuth.

The gold catalysts can also carry out partial oxidations under solvent-free conditions, the researchers said, making them more environmentally friendly than oxidation processes that use chlorine, and less costly than those employing organic peroxides.

The team, led by Graham Hutchings, professor of physical chemistry at Cardiff University in Wales, included eight other Cardiff chemists, four scientists from the Johnson Matthey chemical company in the United Kingdom, and a materials scientist from Lehigh University in Bethlehem, Pennsylvania.

Their article was titled "Tuneable gold catalysts for selective hydrocarbon oxidation under mild conditions."

Masatake Haruta, a catalyst chemist at Tokyo Metropolitan University who has been at the forefront of gold nanoparticles research for more than a decade, said in a commentary accompanying the Nature article that the breakthrough by Hutchings's group had the potential to "transform" the chemical industry.

Noting that most industrial oxidation processes use chlorine or organic peroxides, Haruta said, "the chemical industry would be transformed if selective oxidation of hydrocarbons could be achieved efficiently using cheap and clean oxygen from the air. The advancement by Hutchings and colleagues of 'greener' methods for oxidation catalysis using gold is therefore invaluable."

The industrial selective oxidation processes that Hutchings's team catalyzed with gold nanoparticles are used to convert unsaturated hydrocarbons to oxygen-containing organic compounds (e.g., epoxides, ketones), which in turn serve as higher-value compounds that form the basis for many chemical products.

The challenge, says Chris Kiely, professor of materials science and engineering at Lehigh University, is to selectively insert an oxygen atom at specific positions into long-chain or cyclic-ring hydrocarbon carbon molecules, something which nanoparticulate gold achieves effectively.

The gold nanoparticles, which measure 2 to 15 nanometers in width (1 nm equals one one-billionth of a meter) must be distributed evenly over a large surface area support and prevented from coalescing and forming larger particles with weaker catalytic properties.

"The nano-gold catalyst can effectively aid the insertion of an oxygen atom into the unsaturated hydrocarbon," says Kiely, who has co-authored several dozen papers with Hutchings. "Activated carbon provides a viable support for the nanoparticles. The gold catalyst can also be fine-tuned and made more effective, giving a higher yield of epoxides and ketones, with the addition of occasional atoms of bismuth.

"We're trying to determine the size, distribution and shape of the gold nanoparticles, and to see how these parameters relate to the measured catalytic properties. We are also interested in the interaction of gold with other promoter elements, such as bismuth, and we're trying to identify exactly where the bismuth atoms are going and why they have a beneficial effect."

Kiely, who joined the Lehigh faculty in 2002 after serving on the materials science and engineering and chemistry faculties at Liverpool University, uses transmission electron microscopy and various spectroscopic techniques to characterize the gold nanoparticles.

The recent acquisition by Lehigh University of two aberration-corrected electron microscopes, including a JEOL 2200FS transmission electron microscope, will shed more light on future work in the area of gold catalysis, he said.

"Before, we were able to see nanoparticles and achieve atomic resolution, but not with the same degree of clarity that the new JEOL microscope provides. The new instrument also gives us the capability of doing chemical composition analysis with close to atomic column precision, which will be a big boon."

Gold in recent years has drawn more attention from researchers as a potential catalyst in chemical processing, pollution control and fuel cell applications. Haruta, a pioneer in this area, demonstrated a decade ago that gold nanoparticles could be used, amongst other things, as catalysts to de-odorize restrooms and to convert carbon monoxide to carbon dioxide at low temperatures.

But much remains to be learned for nano-gold to realize its full potential, says Kiely, who directs the Nanocharacterization Laboratory in Lehigh's Center for Advanced Materials and Nanotechnology.

"Gold is a very useful catalyst for many chemical reactions," says Kiely, "but we're still not sure what happens at the molecular scale during the catalysis process. The more we learn, the better we can fine-tune gold nanoparticle catalysts."

####
Media Contact:
Kurt Pfitzer
kap4@lehigh.edu
610-758-3017

Copyright © Lehigh University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Materials/Metamaterials

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Announcements

Imec, Murata, and Huawei Introduce Breakthrough Solution for TX-to-RX Isolation in Reconfigurable, Multiband Front-End Modules for Mobile Phones: Electrical-Balance Duplexers Pave the Way to Integrated Solution for TX-to-RX Isolation March 1st, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Environment

Simple, Cost-Efficient Method Used to Determine Toxicants Growing in Pistachio February 26th, 2015

Purification of Industrial Wastewater Using Visible-Light Sensitive Photocatalysts February 24th, 2015

Nanocomposite Membranes Used in Iran for Water Desalination, Sweetening February 16th, 2015

Scientists in Iran Use Nanotechnology for Industrial Purification of Drinking Water February 13th, 2015

Industrial

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

Purification of Industrial Wastewater Using Visible-Light Sensitive Photocatalysts February 24th, 2015

Increasing Efficiency of Cooling Devices in Oil, Gas Industries February 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE