Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanoblinds

Abstract:
Helical polymer with side groups that synchronously flip “on command”

Nanoblinds

October 25, 2005

Some molecules occur in two versions related to each other like mirror images; this property is called chirality. For example, helical polymers are chiral - they can be either left- or right-handed helices. The left and right versions differ in their optical properties, such as their optical activity (they twist the plane of polarized light in opposite directions). Molecules whose optical properties can be precisely controlled - and switched - are highly sought after, as they present interesting possibilities for new data storage devices, optical components, or liquid-crystal displays. American researchers have now developed a helical polymer with side groups that can be flipped back and forth synchronously, like Venetian blinds.

The research team headed by Bruce M. Novak from North Carolina State University and Prasad L. Polavarpu from Vanderbilt University produced a helical polymer from an achiral building block. The use of a chiral catalyst made it possible to link the monomers exclusively into helices twisted in the same direction. Raising the temperature or changing the solvent causes a sudden - and reversible - change in some of the polymer’s optical properties (optical activity and electronic circular dichroism); contrary to expectations, one other property (vibrational circular dichroism) remains unchanged. What is happening with this molecule? Does the direction of the helix change? The researchers have now been able to prove that isn’t the case. The backbone of the polymer remains the same. The only explanation for these initially contradictory seeming observations is the following: the polymer has side chains that stick out from the backbone at an angle, like little flat wings. All of these “wings” twist around the bond that attaches them to the backbone. In the end, they point in the opposite direction, relative to the helix, from where they started. This occurs synchronously, like a Venetian blind being flipped.

Why does raising the temperature or changing the solvent cause this flip? The two wing positions are not equivalent. Depending on the polarity of the solvent, one or the other form of the molecule is stabilized. A higher temperature stabilizes the less energetically favorable form of the molecule, a lower temperature stabilizes the more energetically favorable form.

“The coordinated, blind-like flipping of the many side groups as the result of an external stimulus,” says Novak, “ could also indicate a very interesting potential for the construction of molecular motors and nanomachines.”

####


Author: Bruce M. Novak, North Carolina State University Raleigh (USA),
www.ncsu.edu/chemistry/novak/page004.html

Title: A Thermal and Solvocontrollable Cylindrical Nanoshutter Based on a Single Screw-Sense Helical Polyguanidine

Angewandte Chemie International Edition, doi: 10.1002/anie.200501977

Contact:
Editorial office:
angewandte@wiley-vch.de

or David Greenberg (US)
dgreenbe@wiley.com

or Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Molecular Machines

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Announcements

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE