Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Two-Tone Molecular Printing

Abstract:
Nanopipette with two chambers produces microstructures made of biomolecules

Two-Tone Molecular Printing

October 24, 2005

The emblem of the Cambridge University, a portrait of scientist Isaac Newton, rendered in microscale as a colorful, fluorescing image: are British researchers just playing around? No, it’s a “finger exercise” for serious science. For modern, miniaturized analytical and diagnostic processes, it is necessary to attach microstructures made of different biomolecules to tiny supports with high precision. David Klenerman and his team from Cambridge University and Imperial College (London) used their miniature artwork to prove that their novel “two-tone molecular printing process” is suitable for the production of very highly resolved microstructures.

The new technique is based on the same principle as scanning probe microscopy, in which an extremely fine tip travels over a surface at a very short distance. At the heart of the new “printing” process is a glass nanopipette whose interior is divided into two chambers by a membrane. The chambers can be filled with two different solutions. Each chamber contains an electrode to which a voltage is applied. This voltage is used to adjust the distance between the pipette tip and the support to be “printed” on. When the pipette gets very close to the surface, a drop of liquid comes out of the tip, which causes a current to flow between the two electrodes - a current dependent on the distance to the surface. Such a dual pipette can operate in air, unlike other voltage-based methods, which require a liquid. Only the meniscus of the drop touches the surface of the support. The “ink” can therefore not run, and finely resolved structures can be produced.

For their tests, the researchers used an ink made of DNA molecules containing a “glue,” a molecule that binds specifically to another protein, like a two-component adhesive. This second protein was used to coat the surface of the support to be imprinted. In addition, a fluorescent dye was attached to the DNA. The two chambers of the pipette were filled with two different DNA-dye inks, one fluorescing red, the other green. How does the pipette know which ink to dispense? By means of the voltage between the electrodes in the two chambers: one electrode is negatively charged, the other is positive. The DNA molecules are attracted to the positive electrode and are retained in the chamber; only the ink in the chamber with the negative electrode can flow out. If the other color is needed, the polarity is simply reversed. The researchers thus dab the dyes onto the support pixel by pixel. Gradations in color intensity are possible in that darker spots can get multiple drops. The yellow color in the university emblem arises when the red and green dyes are applied over one another. Because both dyes come out of the same pipette tip, the work is much more precise than is possible with multiple-pipette processes.

####


Author: David Klenerman, University of Cambridge (UK), www.ch.cam.ac.uk/staff/dk.html

Title: Two-Component Graded Deposition of Biomolecules with a Double-Barreled Nanopipette

Angewandte Chemie International Edition 2005, 44, 6854, doi: 10.1002/anie.200502338

Contact:
Editorial office:
angewandte@wiley-vch.de

or David Greenberg (US)
dgreenbe@wiley.com

or Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project