Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UT Researchers Link Carbon Nanoparticles to Blood Clotting

Abstract:
Nanoparticles thought to have great potential in medical applications

UT Researchers Link Carbon Nanoparticles to Blood Clotting

Houston, TX | October 21, 2005

Carbon nanoparticles – both those unleashed in the air by engine exhaust and the engineered structures thought to have great potential in medical applications – promote blood-clotting, scientists report in an upcoming edition of the British Journal of Pharmacology.

Researchers from The University of Texas Health Science Center at Houston and Ohio University examined the impact of various forms of carbon nanoparticles in a laboratory experiment on human platelets – blood’s principal clotting element – and in a model of carotid artery thrombosis, or blockage, using anesthetized rats.

“We found that some carbon nanoparticles activate human platelets and stimulate them to aggregate, or clump together. We also demonstrate that the same nanoparticles stimulated blockage of the carotid artery in the rat model,” said research team leader Marek Radomski, M.D., Ph.D., of the Center for Vascular Biology at the Brown Foundation Institute of Molecular Medicine (IMM) at the UT Health Science Center.

C60, a spherical carbon molecule also known as a fullerene or “bucky ball,” was the exception, showing no effect on human platelet aggregation and very little effect on rat thrombosis.

“This research is not a case against nanotechnology. It’s difficult to overestimate the importance of this amazing technology’s ability to transform medicine. But it’s good to assess the risk of a new technology in advance. This is a case for moving ahead in a cautious and informed way,” said Radomski, who also is a professor of integrative biology and pharmacology at the UT Medical School at Houston.

Nanoparticles – so tiny that they are measured in billionths of a meter – pass easily through the lungs and into the bloodstream, Radomski said, where they can interact with platelets. They also tend to aggregate on their own, a property that could also enhance blood clotting.

“Medical evidence has been accumulating mainly from epidemiological studies that exposure of humans to particulate matter, and to very small particles, increases the risk of cardiovascular disease,” Radomski said. “The mechanisms of that risk are not well-known. Clot formation is my research interest, and we wanted to look at the effect of nanoparticles – both the pollutants caused by combustion, and engineered nanoparticles that might be used in various nanomedical devices such as improved drug delivery systems.”

In a paper posted online ahead of publication last month, the team compared the impact of standard urban particulate matter, mixed carbon nanoparticles, “bucky balls,” single-wall carbon nanotubes, and multiple wall carbon nanotubes on human platelet clumping and thrombosis in rats.

In both experiments, the mixed carbon nanoparticles had the most impact, provoking the greatest degree of platelet aggregation and the most dramatic reduction of carotid blood flow in the rats. The single-wall carbon nanotubes ranked second, the multiple wall nanotubes third and the standard urban particulate matter fourth in both experiments.

These four types of nanoparticles also were shown to activate a receptor on platelets that is vital to their aggregation – the glycoprotein integrin receptor. This seems to be the underlying mechanism for the nanoparticle’s effects, the researchers note, but each nanoparticle employed a different molecular pathway to activate the receptor.

Bucky balls had virtually no effect. Nanotubes appear to mimic molecular bridges involved in platelet interactions while the bucky balls do not. This gives the spherical, less adhesive bucky balls a potential advantage in the design of nanopharmaceutical devices for targeted drug delivery or imaging systems, the researchers note.

The impact of mixed carbon nanotubes and standard urban particulates suggests a risk of thrombosis from airborne pollution, in addition to the risk of atherosclerosis and heart attack.

First author of the paper is Anna Radomski, M.D., research associate at the IMM. Other UT Health Science Center co-authors include Paul Jurasz, Ph.D., and David Alonso-Escolano, Ph.D., both post-doctoral fellows at the IMM, and Maria Morandi, Ph.D., assistant professor of environmental and occupational health at the UT School of Public Health at Houston.

Co-authors from Ohio University are Tadeusz Malinski, Ph.D., Marvin & Ann Dilley White Professor of Nanomedicine, and Magdalena Drews, M.D., post-doctoral fellow at the Department of Biochemistry. Radomski and Malinski are longstanding research collaborators and Malinski developed the rat model of thrombosis employed in the study.

####
Media Contact:
Scott Merville
Media Hotline: 713.500.3030

Copyright © University of Texas Health Science Center

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Nanotubes/Buckyballs

Tesla NanoCoatings Increasing Use of SouthWest NanoTechnologies Carbon Nanotubes (CNTs) for its Infrastructure Coatings and Paints: High Quality SMW™ Specialty Multi-wall Carbon Nanotubes Incorporated into Teslan®-brand coatings used by Transportation, Oil and Gas Companies November 19th, 2014

Graphene/nanotube hybrid benefits flexible solar cells: Rice University labs create novel electrode for dye-sensitized cells November 17th, 2014

SouthWest NanoTechnologies to Demonstrate 3D Capacitive Touch Sensor Featuring Transparent, Thermoformed Carbon Nanotube Ink at Printed Electronics USA 2014 (Booth J25) -- “Conductive and Semiconducting Single-Wall Carbon Nanotube Inks” will be Topic of Company Presentation November 10th, 2014

Neural Canals Produced in Iran for Recovery of Sciatica Nerve November 8th, 2014

Nanomedicine

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Materials/Metamaterials

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Aromatic food chemistry to the making of copper nanowires November 24th, 2014

Announcements

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE