Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UT Researchers Link Carbon Nanoparticles to Blood Clotting

Abstract:
Nanoparticles thought to have great potential in medical applications

UT Researchers Link Carbon Nanoparticles to Blood Clotting

Houston, TX | October 21, 2005

Carbon nanoparticles – both those unleashed in the air by engine exhaust and the engineered structures thought to have great potential in medical applications – promote blood-clotting, scientists report in an upcoming edition of the British Journal of Pharmacology.

Researchers from The University of Texas Health Science Center at Houston and Ohio University examined the impact of various forms of carbon nanoparticles in a laboratory experiment on human platelets – blood’s principal clotting element – and in a model of carotid artery thrombosis, or blockage, using anesthetized rats.

“We found that some carbon nanoparticles activate human platelets and stimulate them to aggregate, or clump together. We also demonstrate that the same nanoparticles stimulated blockage of the carotid artery in the rat model,” said research team leader Marek Radomski, M.D., Ph.D., of the Center for Vascular Biology at the Brown Foundation Institute of Molecular Medicine (IMM) at the UT Health Science Center.

C60, a spherical carbon molecule also known as a fullerene or “bucky ball,” was the exception, showing no effect on human platelet aggregation and very little effect on rat thrombosis.

“This research is not a case against nanotechnology. It’s difficult to overestimate the importance of this amazing technology’s ability to transform medicine. But it’s good to assess the risk of a new technology in advance. This is a case for moving ahead in a cautious and informed way,” said Radomski, who also is a professor of integrative biology and pharmacology at the UT Medical School at Houston.

Nanoparticles – so tiny that they are measured in billionths of a meter – pass easily through the lungs and into the bloodstream, Radomski said, where they can interact with platelets. They also tend to aggregate on their own, a property that could also enhance blood clotting.

“Medical evidence has been accumulating mainly from epidemiological studies that exposure of humans to particulate matter, and to very small particles, increases the risk of cardiovascular disease,” Radomski said. “The mechanisms of that risk are not well-known. Clot formation is my research interest, and we wanted to look at the effect of nanoparticles – both the pollutants caused by combustion, and engineered nanoparticles that might be used in various nanomedical devices such as improved drug delivery systems.”

In a paper posted online ahead of publication last month, the team compared the impact of standard urban particulate matter, mixed carbon nanoparticles, “bucky balls,” single-wall carbon nanotubes, and multiple wall carbon nanotubes on human platelet clumping and thrombosis in rats.

In both experiments, the mixed carbon nanoparticles had the most impact, provoking the greatest degree of platelet aggregation and the most dramatic reduction of carotid blood flow in the rats. The single-wall carbon nanotubes ranked second, the multiple wall nanotubes third and the standard urban particulate matter fourth in both experiments.

These four types of nanoparticles also were shown to activate a receptor on platelets that is vital to their aggregation – the glycoprotein integrin receptor. This seems to be the underlying mechanism for the nanoparticle’s effects, the researchers note, but each nanoparticle employed a different molecular pathway to activate the receptor.

Bucky balls had virtually no effect. Nanotubes appear to mimic molecular bridges involved in platelet interactions while the bucky balls do not. This gives the spherical, less adhesive bucky balls a potential advantage in the design of nanopharmaceutical devices for targeted drug delivery or imaging systems, the researchers note.

The impact of mixed carbon nanotubes and standard urban particulates suggests a risk of thrombosis from airborne pollution, in addition to the risk of atherosclerosis and heart attack.

First author of the paper is Anna Radomski, M.D., research associate at the IMM. Other UT Health Science Center co-authors include Paul Jurasz, Ph.D., and David Alonso-Escolano, Ph.D., both post-doctoral fellows at the IMM, and Maria Morandi, Ph.D., assistant professor of environmental and occupational health at the UT School of Public Health at Houston.

Co-authors from Ohio University are Tadeusz Malinski, Ph.D., Marvin & Ann Dilley White Professor of Nanomedicine, and Magdalena Drews, M.D., post-doctoral fellow at the Department of Biochemistry. Radomski and Malinski are longstanding research collaborators and Malinski developed the rat model of thrombosis employed in the study.

####
Media Contact:
Scott Merville
Media Hotline: 713.500.3030

Copyright © University of Texas Health Science Center

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

TUBALL nanotube-based concentrates recognised as the most innovative raw material for composites by JEC Group November 7th, 2017

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Nanomedicine

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3’s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Arrowhead to Present at 29th Annual Piper Jaffray Healthcare Conference November 14th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Materials/Metamaterials

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

TUBALL nanotube-based concentrates recognised as the most innovative raw material for composites by JEC Group November 7th, 2017

Announcements

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project