Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New Insight Into Heat Transfer in Biological Systems

Abstract:
Findings could have immediate practical application for cancer therapy, and could be important to the electronics industry

Nanoscale Study Gives New Insight Into Heat Transfer in Biological Systems

Trou, NY | October 20, 2005

One of the first things we learn in chemistry class is that solids conduct heat better than liquids. But a new study suggests that in nanoscale materials, this is not necessarily the case.

Using computer simulations, researchers at Rensselaer Polytechnic Institute have found that heat may actually move better across interfaces between liquids than it does between solids. The findings, which were published online Oct. 11 in the journal Nano Letters, provide insights that could prove useful in fields ranging from computer chip manufacturing to cancer treatment.

Conduction is the movement of heat from a warmer substance to a cooler substance, as when a spoon heats up after sitting in a cup of hot soup. “Liquids generally have low thermal conductivity when compared to solids,” says Pawel Keblinski, associate professor of materials science and engineering at Rensselaer and coauthor of the paper. “For example, diamond is one of the best conductors around, with a conductivity of about 5,000 times that of water.” Metals also tend to be good conductors, which is why the same spoon would normally feel cold to the touch - it conducts heat away from the hand.

But this conventional wisdom refers only to “bulk” thermal conductivity, which occurs at the macroscale. In nanoscale materials, the conductivity across interfaces plays a major role. “Conductivity at the interface of two materials is controlled by the nature of the interaction between molecules,” says Shekhar Garde, associate professor of chemical and biological engineering at Rensselaer and also coauthor of the paper. “Even if the two substances are good conductors, the nature of the interface could affect heat transfer between them.”

Garde and Keblinski performed molecular simulations of a variety of interfaces and found that thermal conductivity between liquid interfaces turns out to be surprisingly high.

The findings could have immediate practical application for cancer therapy, according to Keblinski. “Scientists are developing cancer treatments based on nanoparticles that attach to specific tissues, which are then heated to kill the cancerous cells,” he says. “It is vital to understand how heat flows in these systems, because too much heat applied in the wrong spot can kill healthy cells.”

Garde’s and Keblinski’s research also could be important to the electronics industry, because of the growing interest in nanocomposite materials for computer chips, which generate a great deal of heat. Chip designers are increasingly combining solid surfaces with softer organic materials, and understanding heat flow will be a key aspect of continuing to shrink the dimensions of chip components, the researchers say.

The findings also provide more fundamental insights that are extremely important for understanding any system with nanoscale features, which tend to have huge numbers of interfaces, according to the researchers.

Biological systems are a key example. The surfaces of proteins, DNA, and other biomolecules interact with water to form the very basis of life. In water-based solutions, proteins instinctively fold into unique three-dimensional structures, which do much of the work in the body. Misfolded proteins also are implicated in diseases such as Alzheimer’s and Parkinson’s, and the ability of proteins to function depends on how much they can vibrate in their folded state.

The next step, according to Keblinski and Garde, is to focus on studying heat transfer between proteins and water, which will give them a better understanding of how water governs protein dynamics.

The National Science Foundation provided funding for the project. Harshit Patel, a graduate student in materials science and engineering at Rensselaer, also took part in the research.

####

Nanotechnology at Rensselaer:
In September 2001, the National Science Foundation selected Rensselaer as one of the six original sites nationwide for a new Nanoscale Science and Engineering Center (NSEC). As part of the U.S. National Nanotechnology Initiative, the program is housed within the Rensselaer Nanotechnology Center and forms a partnership between Rensselaer, the University of Illinois at Urbana-Champaign, and Los Alamos National Laboratory. The mission of Rensselaer’s Center for Directed Assembly of Nanostructures is to integrate research, education, and technology dissemination, and to serve as a national resource for fundamental knowledge and applications in directed assembly of nanostructures. The five other original NSECs are located at Harvard University, Columbia University, Cornell University, Northwestern University, and Rice University.

For more information, please click here

About Rensselaer:
Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The university offers bachelor’s, master’s, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

For more information, please click here

Contact:
Jason Gorss
Science Writer/Media Relations Specialist
Rensselaer Polytechnic Institute
phone: 518-276-6098
fax: 518-276-6091
gorssj@rpi.edu

Copyright © Rensselaer Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Nanomedicine

Engineering self-assembling amyloid fibers January 26th, 2015

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

2nd International Conference on Infectious Diseases & Nanomedicine (December 15-18, 2015, Kathmandu, NEPAL) January 22nd, 2015

Nanoelectronics

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Rapid journey through a crystal lattice: Researchers measure how fast electrons move through single atomic layers January 14th, 2015

A new step towards using graphene in electronic applications January 14th, 2015

Materials/Metamaterials

Chromium-centered cycloparaphenylene rings for making functionalized nanocarbons January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Announcements

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE