Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Proofreading and error-correction in nanomaterials inspired by nature

Abstract:
The new proofreading and error-removal process is based on catalytic DNA and represents a paradigm shift in nanoscale science and engineering

Proofreading and error-correction in nanomaterials inspired by nature

Champaign, IL | October 18, 2005

Mimicking nature, a procedure developed by researchers at the University of Illinois at Urbana-Champaign can find and correct defects in self-assembled nanomaterials. The new proofreading and error-removal process is based on catalytic DNA and represents a paradigm shift in nanoscale science and engineering.

Despite much progress made in the self-assembly of nanomaterials, defects that occur during the assembly process still present major obstacles for applications such as molecular electronics and photonics. Efforts to overcome this problem have focused on optimizing the assembly process to minimize errors, and designing devices that can tolerate errors.

"Instead of trying to avoid defects or work around them, it makes more sense to accept defects as part of the process and then correct them during and after the assembly process," said Yi Lu, a chemistry professor at Illinois and a researcher at the Beckman Institute for Advanced Science and Technology. "This procedure is analogous to how nature deals with defects, and can be applied to the assembly of nanomaterials using biomolecules or biomimetic compounds."

In protein synthesis, nature ensures accuracy by utilizing a proofreading unit that detects and corrects errors in translation, often through hydrolysis of incorrect amino acid building blocks. In a similar fashion, Lu and graduate students Juewen Liu and Daryl Wernette utilized catalytic DNA to locate and remove errors in a DNA-templated gold nanoparticle assembly process. The researchers describe the procedure in a paper accepted for publication in the journal Angewandte Chemie International Edition, and posted on its Web site.

Catalytic DNA contains a substrate strand and an enzyme strand. In the presence of certain ions, the substrate is cleaved by the enzyme into two pieces of unequal length. The cleaved fragment with the shorter binding arm can be easily released. This catalytic DNA serves as a template for assembly of nanoparticles.

There are three kinds of nanoparticles encoded by different DNA in the system: two are defined as "correct" particles and one is defined as a "wrong" particle. Besides the difference in coding DNA, the nanoparticles can also be different in other aspects, such as size.

"To allow the catalytic DNA substrate to be a template for nanoparticle assembly, the substrate strand must be complementary to the DNA attached to the nanoparticles," Lu said. "A defect can occur in a DNA-templated gold nanoparticle assembly when the wrong particle is incorporated into the structure."

When a particle of the correct size is encountered, binding of the longer arm of the enzyme to the DNA template is permitted, while binding of the shorter arm to the DNA template is inhibited. "The active structure of the catalytic DNA cannot form," Lu said. "As a result, the template is not cleaved and the particle is incorporated into the assembly."

When a particle of the wrong size is mistakenly incorporated into the assembly, the enzyme can bind both its arms to the substrate template and form an active structure to cleave the substrate and remove the particle.

By showing that defects - the wrong size particles, in this case - can be identified and removed, the researchers demonstrated that proofreading and error-correction can take place during and after the assembly of nanoparticles.

"This was a small, but definite, step in the right direction," Lu said. "The error-correction procedure can be expanded to include many other biomolecules and biomimetic compounds for controlling the assembly of nanoparticles of defined particle sizes, shapes or compositions; as well as other nanomaterials, such as nanotubes and nanowires."

The researchers have applied for a patent. The work was funded by the U.S. Department of Defense and the National Science Foundation.

Editor's note: To reach Yi Lu, call 217-333-2619; yi-lu@uiuc.edu.

####


Contact:
James E. Kloeppel
Physical Sciences Editor
217-244-1073
kloeppel@uiuc.edu

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Self Assembly

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

WSU researchers develop shape-changing 'smart' material: Heat, light stimulate self-assembly July 4th, 2016

Materials/Metamaterials

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Unraveling the crystal structure of a -70° Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Semblant to Present at China Mobile Manufacturing Forum 2016 August 25th, 2016

Announcements

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Patents/IP/Tech Transfer/Licensing

Industrial Nanotech, Inc. Provides Shareholder Update August 22nd, 2016

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic