Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Proofreading and error-correction in nanomaterials inspired by nature

Abstract:
The new proofreading and error-removal process is based on catalytic DNA and represents a paradigm shift in nanoscale science and engineering

Proofreading and error-correction in nanomaterials inspired by nature

Champaign, IL | October 18, 2005

Mimicking nature, a procedure developed by researchers at the University of Illinois at Urbana-Champaign can find and correct defects in self-assembled nanomaterials. The new proofreading and error-removal process is based on catalytic DNA and represents a paradigm shift in nanoscale science and engineering.

Despite much progress made in the self-assembly of nanomaterials, defects that occur during the assembly process still present major obstacles for applications such as molecular electronics and photonics. Efforts to overcome this problem have focused on optimizing the assembly process to minimize errors, and designing devices that can tolerate errors.

"Instead of trying to avoid defects or work around them, it makes more sense to accept defects as part of the process and then correct them during and after the assembly process," said Yi Lu, a chemistry professor at Illinois and a researcher at the Beckman Institute for Advanced Science and Technology. "This procedure is analogous to how nature deals with defects, and can be applied to the assembly of nanomaterials using biomolecules or biomimetic compounds."

In protein synthesis, nature ensures accuracy by utilizing a proofreading unit that detects and corrects errors in translation, often through hydrolysis of incorrect amino acid building blocks. In a similar fashion, Lu and graduate students Juewen Liu and Daryl Wernette utilized catalytic DNA to locate and remove errors in a DNA-templated gold nanoparticle assembly process. The researchers describe the procedure in a paper accepted for publication in the journal Angewandte Chemie International Edition, and posted on its Web site.

Catalytic DNA contains a substrate strand and an enzyme strand. In the presence of certain ions, the substrate is cleaved by the enzyme into two pieces of unequal length. The cleaved fragment with the shorter binding arm can be easily released. This catalytic DNA serves as a template for assembly of nanoparticles.

There are three kinds of nanoparticles encoded by different DNA in the system: two are defined as "correct" particles and one is defined as a "wrong" particle. Besides the difference in coding DNA, the nanoparticles can also be different in other aspects, such as size.

"To allow the catalytic DNA substrate to be a template for nanoparticle assembly, the substrate strand must be complementary to the DNA attached to the nanoparticles," Lu said. "A defect can occur in a DNA-templated gold nanoparticle assembly when the wrong particle is incorporated into the structure."

When a particle of the correct size is encountered, binding of the longer arm of the enzyme to the DNA template is permitted, while binding of the shorter arm to the DNA template is inhibited. "The active structure of the catalytic DNA cannot form," Lu said. "As a result, the template is not cleaved and the particle is incorporated into the assembly."

When a particle of the wrong size is mistakenly incorporated into the assembly, the enzyme can bind both its arms to the substrate template and form an active structure to cleave the substrate and remove the particle.

By showing that defects - the wrong size particles, in this case - can be identified and removed, the researchers demonstrated that proofreading and error-correction can take place during and after the assembly of nanoparticles.

"This was a small, but definite, step in the right direction," Lu said. "The error-correction procedure can be expanded to include many other biomolecules and biomimetic compounds for controlling the assembly of nanoparticles of defined particle sizes, shapes or compositions; as well as other nanomaterials, such as nanotubes and nanowires."

The researchers have applied for a patent. The work was funded by the U.S. Department of Defense and the National Science Foundation.

Editor's note: To reach Yi Lu, call 217-333-2619; yi-lu@uiuc.edu.

####


Contact:
James E. Kloeppel
Physical Sciences Editor
217-244-1073
kloeppel@uiuc.edu

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Self Assembly

Revealed: How bacteria drill into our cells and kill them December 2nd, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Outsmarting Thermodynamics in Self-assembly of Nanostructures: Berkeley Lab reports method for symmetry-breaking in feedback-driven self-assembly of optical metamaterials November 4th, 2014

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Materials/Metamaterials

Aculon Hires New Business Development Director December 19th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Graphene Applied in Production of Recyclable Electrodes December 13th, 2014

Announcements

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Patents/IP/Tech Transfer/Licensing

Silicon Valley-Based Foresight Valuation Launches STR-IP™, a New Initiative for Startups to Discover the Value of Their Intellectual Property December 18th, 2014

Chemists Fabricate Novel Rewritable Paper: An attractive alternate to regular paper, UC Riverside-developed technology helps address increasing problems in environment and resource sustainability December 2nd, 2014

Dicerna Announces License Agreement with Tekmira to Advance Dicerna’s PH1 Development Program November 17th, 2014

First genetic-based tool to detect circulating cancer cells in blood: NanoFlares light up individual cells if breast cancer biomarker is present November 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE