Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Transforming the Properties of Matter With Tunable Quantum Dots

Abstract:
System promises the possibility of designing artificial solids that can be switched through a variety of electronic phase transitions

It's a Semiconductor; Penn Researchers Transform the Properties of Matter With Tunable Quantum Dots

October 05, 2005

Researchers at the University of Pennsylvania may not have turned lead into gold as alchemists once sought to do, but they did turn lead and selenium nanocrystals into solids with remarkable physical properties. In the October 5 edition of Physical Review Letters, online now, physicists Hugo E. Romero and Marija Drndic describe how they developed am artificial solid that can be transformed from an insulator to a semiconductor.

The Penn physicists are among many modern researchers who have been experimenting with a different way of transforming matter through artificial solids, formed from closely packed nanoscale crystals, also called "quantum dots."

"Essentially, we're forming artificial solids from artificial atoms about 10 times larger than real atoms whose properties we can fine tune on the quantum level," said Drndic, an assistant professor in Penn's Department of Physics and Astronomy. "Artificial solids are expected to revolutionize the fabrication of electronic devices in the near future, but now we are only beginning to understand their fundamental behavior."

Artificial solids, in general, are constructed by specifically assembling a number of nanocrystals, each composed of only a few thousand atoms, into a closely packed and well-ordered lattice. Previous researchers have demonstrated that quantum dots can be manipulated to change their physical properties, particularly their optical properties. In fact, the blue laser, which will soon be put into use into commercial products, was a result of early research in changing the colors of quantum dots.

"Many of the physical parameters of these crystals, such as their composition, particle size and interparticle coupling, represent knobs that can be individually controlled at nanometer scales," Drndic said. "Variation of any of these parameters translates directly into either subtle or dramatic changes in the collective electronic, optical and magnetic response of the crystal. In this case we were able to adjust its electrical properties."

In their study, Drndic and her colleagues looked at the ability of artificial solids to transport electrons. They demonstrated that, by controlling the coupling of artificial atoms within the crystal, they could increase the electrical conductivity of the entire crystal.

According to the researchers, this system promises the possibility of designing artificial solids that can be switched through a variety of electronic phase transitions, with little influence from the local environment. Their findings represent a key step towards the fabrication of functional nanocrystal-based devices and circuits.

Quantum dots are more than simply analogous to individual atoms; they also demonstrate quantum effects, like atoms, but on a larger scale. As a tool for research, quantum dots make it possible for physicists to measure, firsthand, some things only described in theory.

"It is this versatility in both experiment and theory that can potentially turn these quantum dot solids into model systems for achieving a general understanding of the electronic structure of solids," Drndic said. "Not only are we making strides in creating a future generation of electronics, but in doing so we are also getting a deeper understanding of the fundamental properties of matter."

This research was funded through grants from the National Science Foundation and the Office of Naval Research.

####
Contact:
Greg Lester
215-573-6604
glester@pobox.upenn.edu



Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanoelectronics

Mexican scientist in the Netherlands seeks to achieve data transmission ... speed of light September 20th, 2016

GLOBALFOUNDRIES to Deliver Industry’s Leading-Performance Offering of 7nm FinFET Technology: Company extends its leading-edge roadmap for products demanding the ultimate processing power September 15th, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

A versatile method to pattern functionalized nanowires: A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of 'nanowires,' providing a new tool for the development of novel nanodevices September 9th, 2016

Materials/Metamaterials

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Chains of nanogold – forged with atomic precision September 23rd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Announcements

Leti and Taiwanese Tech Organizations Sponsoring Workshop in Taipei on MEMS, IoT, Smart Lighting Applications, System Reliability & Security September 28th, 2016

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic