Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanotech Processing "Greener" than Oil Refining

Abstract:
Insurance Industry Risk Model Puts Nanotubes On Par With Wine Making

Nanotech Processing "Greener" than Oil Refining

Houston, TX | October 04, 2005

Using a method for assessing the premiums that companies pay for insurance, a team of scientists and insurance experts have concluded that the manufacturing processes for five, near-market nanomaterials - including quantum dots, carbon nanotubes and buckyballs - present fewer risks to the environment than some common industrial processes like oil refining. For two of the nanomaterials -­ nanotubes and alumoxane nanoparticles - manufacturing risks were comparable with those of making wine or aspirin.

The study is available online and slated for publication in the Nov. 15 issue of Environmental Science and Technology. It compares the environmental and health risks associated with the production of five nanomaterials - single-walled carbon nanotubes, buckyballs, zinc selenide quantum dots, alumoxane nanoparticles and titantium dioxide nanoparticles - with the risks of making six commonplace products - silicon wafers, wine, high-density plastic, lead-acid car batteries, refined petroleum and aspirin.

"There are many unknowns about the impacts of nanomaterials on living organisms and ecosystems, but a great deal is known about the properties of the materials that are used to create nanomaterials," said study co-author Mark Wiesner, professor of civil and environmental engineering at Rice University. "Our goal was to produce an early estimate of the environmental footprint" for nanomaterials fabrication.

"The jury is still out on whether some nanomaterials pose a risk, but it is not too early to consider how we might avoid environmental and health risks associated with making these new materials," Wiesner said. "We have a narrow window of opportunity to guide the emerging nanomaterial industry towards a green future. With this study, we hope to establish a baseline for the safe, responsible development of the nanomaterials manufacturing industry."

In developing their risk assessments, the research team developed a detailed account of the input materials, output materials and waste streams for each process. Risk was qualitatively assessed for each process, based on factors including toxicity, flammability and persistence in the environment.

Using an actuarial protocol developed by the Zurich-based insurance company, XL Insurance, the researchers developed three risk scores for each of the 11 processes: incident risk, which refers to in-process accidents; normal operations risk, which refers to waste streams and airborne emissions; and latent contamination, which refers to the potential for long-term contamination.

Wiesner said the incident risks for most of the nanomaterials were comparable or lower than those of non-nanoprocesses.

"That doesn¹t imply that the non-nano processes present an acceptable level of risk, or that there is no room for improvement across the board, but the study does suggest that the risks of making these new materials will not be drastically different from those we encounter in current industries," he said.

For example, the incident risks associated with alumoxane and nanotube production fell near or below the scores for wine production. Buckyballs had the highest incident risk rating among nanomaterials and scored near the risks associated with producing polyolefins, a broad class of polymers like polyethylene that are used in making plastics.

The normal operations risk scores for nanotubes and alumoxanes were comparable to those of wine and aspirin making, while the scores for buckyballs, quantum dots and titanium dioxide were comparable to the operations risks of making silicon wafers and car batteries. The normal operations risks associated with plastics and petroleum refining were greater than those for any nanomaterial.

For all of the nanomaterials except buckyballs, latent risk scores were comparable to those of silicon wafers, wine and aspirin production. Buckyballs had a latent score comparable to car battery and plastics production and considerably lower than the score for petroleum refining.

"We can't anticipate all of the details of how nanomaterials fabrication will evolve, but based on what we do know, the fabrication of the nanomaterials we considered appears to present lower risks than current industrial activities like petrochemical refining, polyethylene production and synthetic pharmaceutical production," said Wiesner.

Co-authors on the study include Rice doctoral student Christine Robichaud; sustainability researcher Dicksen Tanzil of Bridges to Sustainability; and Ulrich Weilenmann of XL Insurance.

The research was funded in part by the National Science Foundation, and by the Environmental Protection Agency.

####

About Rice University:
Rice University is consistently ranked one of America's best teaching and research universities. It is distinguished by its: size‹2,850 undergraduates and 1,950 graduate students; selectivity -10 applicants for each place in the freshman class; resources - an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice's wooded campus is located in the nation's fourth largest city and on America's South Coast.

For more information, visit www.rice.edu

Contact:
Jade Boyd
(713) 348-6778
jadeboyd@rice.edu

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Preparing for Nano

Durnham University's DEEPEN project comes to a close September 26th, 2012

Technical Seminar at ANFoS 2012 August 22nd, 2012

Nanotechnology shows we can innovate without economic growth April 12th, 2012

Thailand to host NanoThailand 2012 December 18th, 2011

Nanotubes/Buckyballs

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

University of Houston researchers create new method to draw molecules from live cells: Technique using magnetic nanomaterials offers promise for diagnosis, gene therapy July 17th, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Researchers discover boron 'buckyball' July 14th, 2014

Materials/Metamaterials

Silicene Labs Announces the Launch of 2D Materials Briefing Book™ and 2D Materials Road-Heat Map™: Contributors Include One of the World's Foremost 2D Materials Scientists July 25th, 2014

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Announcements

Nano-supercapacitors for electric cars July 25th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Environment

Researchers Use Various Zinc Oxide Nanostructures to Boost Efficiency of Water Purification Process July 13th, 2014

Using Sand to Improve Battery Performance: Researchers develop low cost, environmentally friendly way to produce sand-based lithium ion batteries that outperform standard by three times July 8th, 2014

Development of an interactive tool for the implementation of environmental legislation for nanoparticles manufacturers July 4th, 2014

Up in Flames: Evidence Confirms Combustion Theory: Berkeley Lab and University of Hawaii research outlines the story of soot, with implications for cleaner-burning fuels July 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE