Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Molecular Needles

Abstract:
Carbon nanotubes inject antimycotics into cells and increase their effectiveness

Molecular Needles

September 19, 2005

Putting pharmaceutical agents into the body isn’t hard, but getting them into targeted areas can be problematic. If drugs aren’t taken up by a large enough proportion of cells, a suitable “transport agent” must be used. A French and Italian research team has successfully used carbon nanotubes as transport agents for antimycotics (antifungal agents). In addition, they have developed a strategy for attaching a second agent or marker to the nanotubes in a controlled fashion.

Carbon nanotubes are long, narrow nanoscale tubes made of multiple layers of carbon atoms arranged in graphite-like sheets. “They can drill through cell membranes like tiny needles,” explains Alberto Bianco, “without damaging the cell.” If proteins or nucleic acids are attached to the nanotubes, they come right along through the membrane. Bianco and a team of scientists from CNRS (Centre National de la Recherche Scientifique of Strasbourg and the University of Trieste wanted to determine if this concept could also be extended to small pharmaceutical molecules such as antibiotics or cancer drugs. They were particularly intrigued by the idea of attaching not one, but two different “passengers.” This would make it possible to carry out combination therapies with two different drugs or to trace the uptake of a drug by using a marker.

Attaching two different molecules to a carbon nanotube in a targeted, controlled, and fully independent manner requires a clever strategy. The researchers thus put two different types of anchor sites, equipped with protective “caps,” on the tips and sides walls of the tubes. They removed the first type of “cap” and attached one kind of molecule, then removed the second type of cap and attached another type of molecule. The researchers thus loaded the nanotubes with the antimycotic amphotericin B, as well as a fluorescence dye.

When coupled to the nanotubes, the drug loses the toxic side effects typical of treatment with amphotericin B. At the same time, its effectiveness against fungi is improved. One reason for this could be the improved solubility in water; in addition, the amphotericin is prevented from forming clumps. “Our approach could help amphotericin B become more widely used against chronic fungal infections,” hopes Bianco.

A particularly attractive target is carbon nanotubes equipped with both a drug and a “guide.” The guide could then recognize certain types of cells, such as tumor cells, and could conduct the transporter to these cells to deliver the drug preferentially to where it is needed.

Author: Alberto Bianco, Institut de Biologie Moléculaire et Cellulaire, Strasbourg (France), link.

####

Contact:
Editorial office
angewandte@wiley-vch.de

David Greenberg (US)
dgreenbe@wiley.com

Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

ANU invention to inspire new night-vision specs December 7th, 2016

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Nanotubes/Buckyballs/Fullerenes

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

Hybrid nanostructures hold hydrogen well: Rice University scientists say boron nitride-graphene hybrid may be right for next-gen green cars October 25th, 2016

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Announcements

ANU invention to inspire new night-vision specs December 7th, 2016

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Journal Nanotechnology Progress International (JONPI), newest edition out December 7th, 2016

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project