Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Molecular Needles

Abstract:
Carbon nanotubes inject antimycotics into cells and increase their effectiveness

Molecular Needles

September 19, 2005

Putting pharmaceutical agents into the body isn’t hard, but getting them into targeted areas can be problematic. If drugs aren’t taken up by a large enough proportion of cells, a suitable “transport agent” must be used. A French and Italian research team has successfully used carbon nanotubes as transport agents for antimycotics (antifungal agents). In addition, they have developed a strategy for attaching a second agent or marker to the nanotubes in a controlled fashion.

Carbon nanotubes are long, narrow nanoscale tubes made of multiple layers of carbon atoms arranged in graphite-like sheets. “They can drill through cell membranes like tiny needles,” explains Alberto Bianco, “without damaging the cell.” If proteins or nucleic acids are attached to the nanotubes, they come right along through the membrane. Bianco and a team of scientists from CNRS (Centre National de la Recherche Scientifique of Strasbourg and the University of Trieste wanted to determine if this concept could also be extended to small pharmaceutical molecules such as antibiotics or cancer drugs. They were particularly intrigued by the idea of attaching not one, but two different “passengers.” This would make it possible to carry out combination therapies with two different drugs or to trace the uptake of a drug by using a marker.

Attaching two different molecules to a carbon nanotube in a targeted, controlled, and fully independent manner requires a clever strategy. The researchers thus put two different types of anchor sites, equipped with protective “caps,” on the tips and sides walls of the tubes. They removed the first type of “cap” and attached one kind of molecule, then removed the second type of cap and attached another type of molecule. The researchers thus loaded the nanotubes with the antimycotic amphotericin B, as well as a fluorescence dye.

When coupled to the nanotubes, the drug loses the toxic side effects typical of treatment with amphotericin B. At the same time, its effectiveness against fungi is improved. One reason for this could be the improved solubility in water; in addition, the amphotericin is prevented from forming clumps. “Our approach could help amphotericin B become more widely used against chronic fungal infections,” hopes Bianco.

A particularly attractive target is carbon nanotubes equipped with both a drug and a “guide.” The guide could then recognize certain types of cells, such as tumor cells, and could conduct the transporter to these cells to deliver the drug preferentially to where it is needed.

Author: Alberto Bianco, Institut de Biologie Moléculaire et Cellulaire, Strasbourg (France), link.

####

Contact:
Editorial office
angewandte@wiley-vch.de

David Greenberg (US)
dgreenbe@wiley.com

Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Nanotubes/Buckyballs

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes - Planar light source using a phosphor screen with highly crystalline single-walled carbon nanotubes (SWCNTs) as field emitters demonstrates its potential for energy-efficient lighting device October 14th, 2014

Nanomedicine

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

European Commission opens the gate towards the implementation of Nanomedicine Translation Hub October 16th, 2014

Announcements

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE