Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Rapid One-Pot Syntheses Developed For Quantum Dots

Abstract:
New processes have applications in bioimaging and solar conversion

Rapid One-Pot Syntheses Developed For Quantum Dots

Buffalo, NY | September 10, 2005

Efficient and highly scalable new chemical synthesis methods developed at the University at Buffalo's Institute for Lasers, Photonics and Biophotonics have the potential to revolutionize the production of quantum dots for bioimaging and photovoltaic applications.

A patent has been filed on the methods, which were described last month in papers in the Journal of the American Chemical Society and Applied Physics Letters.

University at Buffalo - quantum dots
A confocal microscope image shows quantum dots, developed at UB, uptaken by cancer cells. Copyright © University at Buffalo
Click on image for larger version.

Quantum dots are tiny semiconductor particles generally no larger than 10 nanometers that can be made to fluoresce in different colors depending on their size. Scientists are interested in quantum dots because they last much longer than conventional dyes used to tag molecules, which usually stop emitting light in seconds. Quantum dots also are of great interest for energy applications because they can produce electrons when they absorb light, making possible extremely efficient solar-energy devices.

Both fabrication methods developed by the UB researchers involve using a single container, or "pot," and take just a few hours to prepare.

The UB scientists report that one of their rapid-solution synthesis methods enabled them to prepare robust, water-dispersible quantum dots for bioimaging, while the other one allowed them to prepare organically soluble quantum dots ready to be sequestered into a polymer host.

The new synthesis methods are truly scalable and can be used to produce large quantities of quantum dots, according to Paras N. Prasad, Ph.D., executive director of the UB Institute for Lasers, Photonics and Biophotonics, SUNY Distinguished Professor in the Department of Chemistry, and co-author on both papers.

"This fast-reaction chemistry will allow us to exploit the true potential of quantum dots, whether it be for delivery into human cells for imaging biological processes in unprecedented detail or for the development of far more efficient devices for solar conversion," he said.

On Aug. 17, the UB researchers reported in a paper in the Journal of the American Chemical Society what is believed to be the first successful demonstration of so-called III-V semiconductor quantum dots as luminescence probes for bioimaging that appear to be non-toxic. "Three-five," and other such classifications refer to the position on the periodic table of the elements that make up semiconductors.

Until now, only II-VI quantum dots have been produced for these applications. However, they are highly toxic to humans.

Composed of indium phosphide, the nanocrystals developed at UB demonstrate luminescence efficiencies comparable to other quantum dots, but they also emit light in longer wavelengths in the red region of the spectrum.

"This is a key advantage because red-light emission means these quantum dots will be capable of imaging processes deeper in the body than commercially available quantum dots, comprised of cadmium selenide, which emit mostly in the lower wavelength range," said Prasad.

Like those cadmium selenide quantum dots, the nanocrystals also exhibit two-photon excitation, absorbing two photons of light simultaneously, which is necessary for high-contrast imaging.

The UB group's quantum dots are composed of an indium phosphide core surrounded by a zinc selenide shell to protect the surface. An organic group then is attached to this shell, as well as a targeting group, in this case, folic acid. Folate receptors are targeted commonly by drugs in diseases such as cancers of the breast, ovary, prostate and colon.

In their experiments, UB researchers showed that the quantum dot system recognized the folate receptor and then penetrated the cell membrane, Prasad explained.

The entire system is water dispersible, which is critical, Prasad said, if quantum dots are to be widely used for bioimaging.

The other scalable chemical fabrication procedure developed by the UB researchers allowed them to prepare quantum dot-polymer nanocomposites that absorb photons in the infrared region.

The work was described in the paper, "Efficient photoconductive devices at infrared wavelengths using quantum dot-polymer nanocomposites," published online Aug. 11 in Applied Physics Letters.

"Current solar cells act only in the green region, thus capturing only a fraction of the available light energy," Prasad said. "By contrast, we have shown that these lead selenide quantum dots can absorb in the infrared, allowing for the development of photovoltaic cells that can efficiently convert many times more light to usable energy than can current solar cells."

In addition to broadening the applications for solar energy in general, the UB research is likely to have applications to nighttime imaging systems used by the military that must absorb and emit light in the infrared.

"Because of the efficient photon harvesting ability of quantum dots, in the immediate future we will be able to incorporate a few different types of them simultaneously into a plastic host material so that an efficient and broad band active solar device is possible," said Yudhisthira Sahoo, Ph.D., research assistant professor in the UB Department of Chemistry and co-author on the APL paper.

Co-authors with Prasad on the paper in the Journal of the American Chemical Society are Dhruba J. Bharali, Ph.D., and Derrick W. Lucey, Ph.D., postdoctoral associates, and Haridas E. Pudavar, Ph.D., senior research scientist, all of the Department of Chemistry in the UB College of Arts and Sciences, and Harishankar Jayakumar, a graduate student in the Department of Electrical Engineering in the UB School of Engineering and Applied Sciences.

The research was supported by a Defense University Research Initiative in Nanotechnology (DURINT) grant from the Air Force Office of Scientific Research and by the John R. Oishei Foundation, as well as by UB's New York State Center of Excellence in Bioinformatics and Life Sciences.

Co-authors with Prasad and Sahoo on the Applied Physics Letters paper are K. Roy Choudhury, graduate student in the Department of Physics in the UB College of Arts and Sciences, and T.Y. Ohulshanskyy, Ph.D., senior research scientist in the UB Department of Chemistry. The research was supported by the DURINT grant and by the National Science Foundation.

Research at UB's Institute for Lasers, Photonics and Biophotonics has been supported by special New York State funding sponsored by State Sen. Mary Lou Rath.

####

About the University at Buffalo:
The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York.

For more information, please visit www.buffalo.edu

Contact:
Ellen Goldbaum
goldbaum@buffalo.edu
716-645-5000 ext 1415
Fax: 716-645-3765

Copyright © University at Buffalo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Defense University Research Initiative in Nanotechnology

Related News Press

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Nanomedicine

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution February 24th, 2015

Discoveries

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Announcements

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Energy

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE