Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Stealth Particles to Target Tumors

Abstract:
Stealth targeting drug delivery system could also deliver genes or gene fragments in gene therapy

Stealth Particles to Target Tumors

Washington, D.C. | August 31, 2005

Stealth nano particles may some day target tumor cells and deliver medication to specific body locations, according to Penn State chemical engineers.

"Mainly we have focused on chemotherapy drugs," says Dr. Michael Pishko, professor of chemical engineering and materials science and engineering. "But others are considering using this delivery system to deliver genes in gene therapy."

The researchers first produce nano-sized powders of the drug they wish to deliver and encapsulate them in a polymer nanoshell. The drug used for this project was paclitaxel -­ an anti breast cancer drug ­ and dexamethasone -­ a steroid frequently used to treat eye inflammation. This shell allows the drug to travel in stealth mode through the bloodstream.

"A layer-by-layer self-assembly technique was used to encapsulate core charged drug nanoparticles in a polymeric nanoshell," the researchers told attendees today (Aug. 31) at the 230th American Chemical Society Meeting, Washington, D.C.

Normally, drugs, especially the toxic drugs used for chemotherapy, trigger the human immune system into action, but, with the polymer shell for protection, these drugs can circulate longer without being removed.

"If the drugs do not trigger an immune response, then lower levels of drug can be used than currently are necessary in chemotherapy," says Pishko.

The researchers, who include Pishko, Alisar Zahr and Cheryl A. Rumbarger, graduate students in chemical engineering, tested their nanoshell in cell culture and found that it had less phagocytosis ­ removal of the drug ­ during a 24-hour period than the unencapsulated drug.

Combined with longer retention in the body, the researchers engineered the nanoparticle shells to target specific cells by attaching a functionalized polymer to the shell. They designed this tentacle-like projection to target a receptor on a tumor cell, or a specific location in the eye, for example. Once the drug arrives via the blood to the tumor or eye, it attaches and slowly releases its contents.

This type of drug delivery system works especially well in such highly vascularized areas such as tumors and the eye, because the drug can travel right up to the target area. Delivery to areas in the brain would not be feasible because of the blood brain barrier that prevents foreign substances from moving from the blood into the cells of the brain.

"For targeting, we could exploit the fact that cancer tumors have a lot more folic acid receptors and target those," says Pishko. "We could also use specific monoclonal antibodies to target specific tumors."

The researchers also considered delivery of drugs to specific type cells, like those in the eye. This type of stealth targeting drug delivery system could also deliver genes or gene fragments in gene therapy.

The National Science Foundation funded this research.

####
Contact:
A'ndrea Elyse Messer
Science & Research Information Officer Penn State
814-865-9481
814-865-9421
aem1@psu.edu

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Self Assembly

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project