Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Golden Bowties

Abstract:
Nanoantenna can compress ordinary light waves into an intense optical spot only 20 nanometers wide

Gold bowties may shed light on molecules and other nano-sized objects

August 30, 2005

One of the great challenges in the field of nanotechnology is optical imaging - specifically, how to design a microscope that produces high-resolution images of the nano-sized objects that researchers are trying to study. For example, a typical DNA molecule is only about three nanometers wide - so tiny that the contours of its surface are obscured by light waves, which are hundreds of nanometers long.

Now, researchers from Stanford University have greatly improved the optical mismatch between nanoscale objects and light by creating the "bowtie nanoantenna," a device 400 times smaller than the width of a human hair that can compress ordinary light waves into an intense optical spot only 20 nanometers wide. These miniature spotlights may one day allow researchers to produce the first detailed images of proteins, DNA molecules and synthetic nano-objects, such carbon nanotube bundles.

"One of our goals is to build a microscope with bowtie antennas that we can scan over a single molecule," says W.E. Moerner, the Harry S. Mosher Professor of Chemistry at Stanford. He and his Stanford colleagues introduced the bowtie nanoantenna earlier this year in a study published in the journal Physical Review Letters that was co-authored by postdoctoral fellow P. James Schuck and graduate student David Fromm in the Department of Chemistry, and Professor Emeritus Gordon Kino and graduate student Arvind Sundaramurthy in the Department of Electrical Engineering.

Golden bowties

The bowtie nanoantenna consists of two triangular pieces of gold, each about 75 nanometers long, whose tips face each other in the shape of a miniature bowtie. The device operates like an antenna for a radio receiver, but instead of amplifying radio waves, the bowtie takes energy from an 830-nanometer beam of near-infrared light and squeezes it into a 20-nanometer gap that separates the two gold triangles. The result is a concentrated speck of light that is a thousand times more intense than the incoming near-infrared beam.

"What you end up with is a very small optical spot that you could scan to make detailed images of molecules and other nano-particles," says Kino, the W.M. Keck Foundation Professor of Electrical Engineering, Emeritus. "Normally we use lenses to focus, but it's not possible to resolve detail in objects smaller than one-half the wavelength of light."

Because the shortest wavelength of visible light is 400 nanometers, a conventional microscope cannot resolve objects 200 nanometers or smaller. "But the bowtie antenna produces an optical spot that's 20-nanometers wide, so we're improving the resolution by a factor of 10," Kino says.

Polymers and sensors

In addition to nano-scale optical imaging, Moerner says that bowties may be useful in photopolymerization, a process that uses light to create synthetic compounds (polymers), which researchers can use to trap nano-particles and place them in specific locations. "It's difficult to put molecules and crystals exactly where you want them when you're working at a nano-scale," Schuck explains.

Bowties also may have applications in Raman spectroscopy, a technique that allows scientists to identify individual molecules by measuring the vibrational energy the molecule emits when exposed to light. "It's analogous to fingerprinting," Schuck explains. "Each molecule has a unique vibrational energy, and bowties have a potential use as biological or chemical sensors that can differentiate molecules."

The Stanford team plans to explore these and other practical applications of bowtie nanoantennas in future experiments. On Aug. 30, Moerner will discuss bowties and other developments in the field of nanophotonics at the annual meeting of the American Chemical Society in Washington, D.C.

####


Professor W.E. Moerner will discuss nanophotonics and single-molecule biophysics at the annual meeting of the American Chemical Society in Washington, D.C., on Aug. 30 at 8:30 a.m. For more information, visit the ACS website at http://www.chemistry.org.

Media Contacts:
Mark Shwartz
News Service
(650) 723-9296
mshwartz@stanford.edu

Relevant URL's:
http://www.stanford.edu/group/moerner
http://snf.stanford.edu
http://www.chemistry.org

Copyright Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Announcements

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Tools

Exploring phosphorene, a promising new material April 29th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Chemists use DNA to build the world's tiniest thermometer April 27th, 2016

Bruker Introduces Dimension FastScan Pro Industrial AFM: Providing Nanometer-Resolution at High Scan Rates for up to 300-mm Samples April 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic