Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Golden Bowties

Abstract:
Nanoantenna can compress ordinary light waves into an intense optical spot only 20 nanometers wide

Gold bowties may shed light on molecules and other nano-sized objects

August 30, 2005

One of the great challenges in the field of nanotechnology is optical imaging - specifically, how to design a microscope that produces high-resolution images of the nano-sized objects that researchers are trying to study. For example, a typical DNA molecule is only about three nanometers wide - so tiny that the contours of its surface are obscured by light waves, which are hundreds of nanometers long.

Now, researchers from Stanford University have greatly improved the optical mismatch between nanoscale objects and light by creating the "bowtie nanoantenna," a device 400 times smaller than the width of a human hair that can compress ordinary light waves into an intense optical spot only 20 nanometers wide. These miniature spotlights may one day allow researchers to produce the first detailed images of proteins, DNA molecules and synthetic nano-objects, such carbon nanotube bundles.

"One of our goals is to build a microscope with bowtie antennas that we can scan over a single molecule," says W.E. Moerner, the Harry S. Mosher Professor of Chemistry at Stanford. He and his Stanford colleagues introduced the bowtie nanoantenna earlier this year in a study published in the journal Physical Review Letters that was co-authored by postdoctoral fellow P. James Schuck and graduate student David Fromm in the Department of Chemistry, and Professor Emeritus Gordon Kino and graduate student Arvind Sundaramurthy in the Department of Electrical Engineering.

Golden bowties

The bowtie nanoantenna consists of two triangular pieces of gold, each about 75 nanometers long, whose tips face each other in the shape of a miniature bowtie. The device operates like an antenna for a radio receiver, but instead of amplifying radio waves, the bowtie takes energy from an 830-nanometer beam of near-infrared light and squeezes it into a 20-nanometer gap that separates the two gold triangles. The result is a concentrated speck of light that is a thousand times more intense than the incoming near-infrared beam.

"What you end up with is a very small optical spot that you could scan to make detailed images of molecules and other nano-particles," says Kino, the W.M. Keck Foundation Professor of Electrical Engineering, Emeritus. "Normally we use lenses to focus, but it's not possible to resolve detail in objects smaller than one-half the wavelength of light."

Because the shortest wavelength of visible light is 400 nanometers, a conventional microscope cannot resolve objects 200 nanometers or smaller. "But the bowtie antenna produces an optical spot that's 20-nanometers wide, so we're improving the resolution by a factor of 10," Kino says.

Polymers and sensors

In addition to nano-scale optical imaging, Moerner says that bowties may be useful in photopolymerization, a process that uses light to create synthetic compounds (polymers), which researchers can use to trap nano-particles and place them in specific locations. "It's difficult to put molecules and crystals exactly where you want them when you're working at a nano-scale," Schuck explains.

Bowties also may have applications in Raman spectroscopy, a technique that allows scientists to identify individual molecules by measuring the vibrational energy the molecule emits when exposed to light. "It's analogous to fingerprinting," Schuck explains. "Each molecule has a unique vibrational energy, and bowties have a potential use as biological or chemical sensors that can differentiate molecules."

The Stanford team plans to explore these and other practical applications of bowtie nanoantennas in future experiments. On Aug. 30, Moerner will discuss bowties and other developments in the field of nanophotonics at the annual meeting of the American Chemical Society in Washington, D.C.

####


Professor W.E. Moerner will discuss nanophotonics and single-molecule biophysics at the annual meeting of the American Chemical Society in Washington, D.C., on Aug. 30 at 8:30 a.m. For more information, visit the ACS website at http://www.chemistry.org.

Media Contacts:
Mark Shwartz
News Service
(650) 723-9296
mshwartz@stanford.edu

Relevant URL's:
http://www.stanford.edu/group/moerner
http://snf.stanford.edu
http://www.chemistry.org

Copyright Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Healthcare Nanotechnology (Nanomedicine) Market Size To 2020 June 5th, 2015

Announcements

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Tools

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Nanometrics to Announce Second Quarter Financial Results on July 23, 2015 July 2nd, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project