Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Tiny Rubber Balls Give Plastic Bounce

Tiny Rubber Balls Give Plastic Bounce

Washington, D.C. | August 29, 2005

Automobile bumpers that deform and recover rather than crack and splinter, computer cases that withstand the occasional rough encounter, and resilient coatings that can withstand the ravages of the sun, may all be possible if tiny functionalized rubbery particles are imbedded in their plastic matrices, according to Penn State materials scientists.

"Plastics such as polypropylene, nylon, polycarbonate, epoxy resins and other compounds are brittle and fracture easily," says Dr. T.C. Chung, professor of materials science and engineering. "Usually, manufacturers take rubbery compounds and just mix them with the plastic, but there are many issues with this approach."

The problems include difficulty in controlling the mixing of the two components and adhesion between the plastic and rubber.

Chung, and Dr. Usama F. Kandil, postdoctoral researcher in materials science and engineering, looked at another way to embed rubbery particles into a plastic matrix. They described their work today (Aug. 29) at the 230th American Chemical Society National Meeting in Washington, D.C.

The researchers used polyolefin ethylene-based elastomer, a very inexpensive stable rubber that withstands exposure to ultra violet radiation. This rubber is often used as the sidewall in many automotive tires. However, rather than simply produce micro particles of polyolefin, Chung and Kandil produce a core-shell particle structure with a tangle of polymerized polyolefin rubber forming a ball with functionalized groups hanging out like bristles.

"These functional groups can combine with the plastic and improve the adhesion of the rubber with the plastic," says Chung.

The rubber particles embedded in other materials absorb some of the energy of impact. Rather than the brittle portion breaking on impact, the rubber parts deform and absorb the energy without breaking. Chung and Kandil believe if they can introduce the rubber particles into other materials, such as ceramics, the rubber would function in the same way, making resilient ceramics. Plastics and rubbers are both polymers, but have one significant difference. Plastics have relatively high glass transition temperatures ­ the temperature at which the materials cease being pliable and become brittle like glass. Rubbers, especially polyolefin, have very low glass transition temperatures.

"Tires never freeze above glass transition temperature," says Chung. "So the material is always in a pliable state at ambient temperatures. This can improve the toughness of any material."

The functionalized groups on the outside of the rubber balls can be tailored to join with any plastic or ceramic, solving the problems of adhesion found when using only untailored rubber particles. These core and shell particles range in size from 30 nanometers to 10 micrometers.

The researchers manufacture their tiny rubber balls in a one-pot procedure that causes the rubber components to cross-link into the shape of a tiny rubber ball with their functional groups intact. Addition of a surfactant ­ a soap-like compound ­ causes the polymers to entangle into a ball with some of the functional groups sticking out from the surface. By controlling the process, the researchers can control the size of the particles from micron-sized to nano particles.

The researchers have applied for a provisional patent on this work.

####
Contact:
A'ndrea Elyse Messer
Science & Research Information Officer
Penn State
814-865-9481
814-865-9421
aem1@psu.edu

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Materials/Metamaterials

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

SouthWest NanoTechnologies CEO Dave Arthur to Discuss “Carbon Nanotubes and Automotive Applications” at The Automotive Composites Conference and Expo 2014 (ACCE2014) August 28th, 2014

Nanodiamonds Are Forever: A UCSB professor’s research examines 13,000-year-old nanodiamonds from multiple locations across three continents August 27th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Announcements

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Patents/IP/Tech Transfer/Licensing

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

AQUANOVA receives Technology Leadership Award 2014 FROST & SULLIVAN honors NovaSOL® Technology again August 12th, 2014

Blacktrace Holdings Ltd. to in-license PerkinElmer Technology August 8th, 2014

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE