Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Tiny Rubber Balls Give Plastic Bounce

Tiny Rubber Balls Give Plastic Bounce

Washington, D.C. | August 29, 2005

Automobile bumpers that deform and recover rather than crack and splinter, computer cases that withstand the occasional rough encounter, and resilient coatings that can withstand the ravages of the sun, may all be possible if tiny functionalized rubbery particles are imbedded in their plastic matrices, according to Penn State materials scientists.

"Plastics such as polypropylene, nylon, polycarbonate, epoxy resins and other compounds are brittle and fracture easily," says Dr. T.C. Chung, professor of materials science and engineering. "Usually, manufacturers take rubbery compounds and just mix them with the plastic, but there are many issues with this approach."

The problems include difficulty in controlling the mixing of the two components and adhesion between the plastic and rubber.

Chung, and Dr. Usama F. Kandil, postdoctoral researcher in materials science and engineering, looked at another way to embed rubbery particles into a plastic matrix. They described their work today (Aug. 29) at the 230th American Chemical Society National Meeting in Washington, D.C.

The researchers used polyolefin ethylene-based elastomer, a very inexpensive stable rubber that withstands exposure to ultra violet radiation. This rubber is often used as the sidewall in many automotive tires. However, rather than simply produce micro particles of polyolefin, Chung and Kandil produce a core-shell particle structure with a tangle of polymerized polyolefin rubber forming a ball with functionalized groups hanging out like bristles.

"These functional groups can combine with the plastic and improve the adhesion of the rubber with the plastic," says Chung.

The rubber particles embedded in other materials absorb some of the energy of impact. Rather than the brittle portion breaking on impact, the rubber parts deform and absorb the energy without breaking. Chung and Kandil believe if they can introduce the rubber particles into other materials, such as ceramics, the rubber would function in the same way, making resilient ceramics. Plastics and rubbers are both polymers, but have one significant difference. Plastics have relatively high glass transition temperatures ­ the temperature at which the materials cease being pliable and become brittle like glass. Rubbers, especially polyolefin, have very low glass transition temperatures.

"Tires never freeze above glass transition temperature," says Chung. "So the material is always in a pliable state at ambient temperatures. This can improve the toughness of any material."

The functionalized groups on the outside of the rubber balls can be tailored to join with any plastic or ceramic, solving the problems of adhesion found when using only untailored rubber particles. These core and shell particles range in size from 30 nanometers to 10 micrometers.

The researchers manufacture their tiny rubber balls in a one-pot procedure that causes the rubber components to cross-link into the shape of a tiny rubber ball with their functional groups intact. Addition of a surfactant ­ a soap-like compound ­ causes the polymers to entangle into a ball with some of the functional groups sticking out from the surface. By controlling the process, the researchers can control the size of the particles from micron-sized to nano particles.

The researchers have applied for a provisional patent on this work.

####
Contact:
A'ndrea Elyse Messer
Science & Research Information Officer
Penn State
814-865-9481
814-865-9421
aem1@psu.edu

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

National Space Society Congratulates SpaceX on the Falcon 9's Return to Flight January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Materials/Metamaterials

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Announcements

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

National Space Society Congratulates SpaceX on the Falcon 9's Return to Flight January 19th, 2017

Eric Berger Wins the National Space Society's 2017 Space Pioneer Award for Mass Media January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Patents/IP/Tech Transfer/Licensing

Keystone Nano Announces The US FDA Has Awarded Orphan Drug Designation For Ceramides For The Treatment Of Liver Cancer November 8th, 2016

Leti to Tackle Tomorrow's Research Strategies with Stanford University’s SystemX Alliance: French R&D Center Is the First Research Institute to Join the Collaboration and Provides Bridges Between Academia and Industry, Leveraging Alliance’s Potential October 4th, 2016

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project