Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Tiny Rubber Balls Give Plastic Bounce

Tiny Rubber Balls Give Plastic Bounce

Washington, D.C. | August 29, 2005

Automobile bumpers that deform and recover rather than crack and splinter, computer cases that withstand the occasional rough encounter, and resilient coatings that can withstand the ravages of the sun, may all be possible if tiny functionalized rubbery particles are imbedded in their plastic matrices, according to Penn State materials scientists.

"Plastics such as polypropylene, nylon, polycarbonate, epoxy resins and other compounds are brittle and fracture easily," says Dr. T.C. Chung, professor of materials science and engineering. "Usually, manufacturers take rubbery compounds and just mix them with the plastic, but there are many issues with this approach."

The problems include difficulty in controlling the mixing of the two components and adhesion between the plastic and rubber.

Chung, and Dr. Usama F. Kandil, postdoctoral researcher in materials science and engineering, looked at another way to embed rubbery particles into a plastic matrix. They described their work today (Aug. 29) at the 230th American Chemical Society National Meeting in Washington, D.C.

The researchers used polyolefin ethylene-based elastomer, a very inexpensive stable rubber that withstands exposure to ultra violet radiation. This rubber is often used as the sidewall in many automotive tires. However, rather than simply produce micro particles of polyolefin, Chung and Kandil produce a core-shell particle structure with a tangle of polymerized polyolefin rubber forming a ball with functionalized groups hanging out like bristles.

"These functional groups can combine with the plastic and improve the adhesion of the rubber with the plastic," says Chung.

The rubber particles embedded in other materials absorb some of the energy of impact. Rather than the brittle portion breaking on impact, the rubber parts deform and absorb the energy without breaking. Chung and Kandil believe if they can introduce the rubber particles into other materials, such as ceramics, the rubber would function in the same way, making resilient ceramics. Plastics and rubbers are both polymers, but have one significant difference. Plastics have relatively high glass transition temperatures ­ the temperature at which the materials cease being pliable and become brittle like glass. Rubbers, especially polyolefin, have very low glass transition temperatures.

"Tires never freeze above glass transition temperature," says Chung. "So the material is always in a pliable state at ambient temperatures. This can improve the toughness of any material."

The functionalized groups on the outside of the rubber balls can be tailored to join with any plastic or ceramic, solving the problems of adhesion found when using only untailored rubber particles. These core and shell particles range in size from 30 nanometers to 10 micrometers.

The researchers manufacture their tiny rubber balls in a one-pot procedure that causes the rubber components to cross-link into the shape of a tiny rubber ball with their functional groups intact. Addition of a surfactant ­ a soap-like compound ­ causes the polymers to entangle into a ball with some of the functional groups sticking out from the surface. By controlling the process, the researchers can control the size of the particles from micron-sized to nano particles.

The researchers have applied for a provisional patent on this work.

####
Contact:
A'ndrea Elyse Messer
Science & Research Information Officer
Penn State
814-865-9481
814-865-9421
aem1@psu.edu

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Materials/Metamaterials

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Coexistence of superconductivity and charge density waves observed June 23rd, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Announcements

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Patents/IP/Tech Transfer/Licensing

New 'ukidama' nanoparticle structure revealed June 14th, 2016

Rice wins award to recruit cancer researcher: $2 million CPRIT grant aims to bring MIT researcher Omid Veiseh to Houston June 7th, 2016

Nanobiotix receives US$1m milestone payment from PharmaEngine: First patient injected with NBTXR3 in soft tissue sarcoma registration phase in Asia May 31st, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic