Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Columbia Researchers Bring Nanotech's Promise a Step Closer to Reality

Abstract:
Scientists one step closer to achieving previously unimagined possibilities

Columbia Researchers Bring Nanotech's Promise a Step Closer to Reality

August 22, 2005

Scientists at Columbia University's Nanoscience Center have solved a fundamental, and to date, highly elusive challenge in the fast-developing world of nanotech-molecular electronic devices.

In the July 22nd issue of Science, Colin Nuckolls, an associate professor of chemistry, and his colleagues George Tulevski, Matt Myers, Michael Steigerwald, along with Mark S. Hybertsen, from the department of applied physics and applied mathematics, describe how they created a so-called electricity-bridge to allow current to flow efficiently between molecules and nano-sized metals, a process necessary for molecular electronic device construction.

The discovery -- involving the ability to construct materials or machines on nano-scales (a nanometer is a billionth of a meter) -- brings scientists one step closer to achieving previously unimagined possibilities, including information processing with molecules, medicines from nanoparticles that vastly improve delivery and dosage, and molecule-sized robots that flow through a person's bloodstream to treat clogged arteries in heart attack or (potential heart attack) patients.

Nuckolls' research team at Columbia's Nanoscience Center built an effective bridge linking the molecular world with a metal (Ruthenium) that is conductive, stable and durable. The majority of experiments to date have used gold as a possible link, which does not offer good electrical conductivity, lacks endurance and doesn't have any useful subsequent chemistry.

Successful miniaturization (i.e., building nanoscale devices) requires these "electricity-bridges" since most electrical activity that is important in electronic devices occurs within just a few nanometers of an interface. "It can not be overstated how important these interfacial structures and properties are," Nuckolls says. "In a sense, interfaces are where the 'expanding nano' of chemistry and the 'shrinking nano' of electronics meet." In other words, he adds, "interfaces are where the rubber meets the road."

Nuckolls' research exemplifies Columbia's interdisciplinary approach and the University's effort to coordinate and harness expertise in various fields -- in this case, engineering, chemistry, mathematics, biology and numerous others to address emerging 21 st century scientific challenges.

Founded in 2001, Columbia's Nanoscience Center draws upon years of experience in chemical synthesis to design molecular structures with carefully crafted properties. Its work has the potential to impact major disciplines in addition to electronics including photonics, biology, neuroscience and medicine. For more information, please visit the Nanoscience Center.

####


Copyright Columbia University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Molecular Machines

First 3-D observation of nanomachines working inside cells: Researchers headed by IRB Barcelona combine genetic engineering, super-resolution microscopy and biocomputation to allow them to see in 3-D the protein machinery inside living cells January 27th, 2017

Micro-bubbles make big impact: Research team develops new ultrasound-powered actuator to develop micro robot November 25th, 2016

Scientists come up with light-driven motors to power nanorobots of the future: Researchers from Russia and Ukraine propose a nanosized motor controlled by a laser with potential applications across the natural sciences and medicine November 11th, 2016

HKU chemists develop world's first light-seeking synthetic Nanorobot November 9th, 2016

Nanomedicine

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Nanoparticle paves the way for new triple negative breast cancer drug March 20th, 2017

Block copolymer micellization as a protection strategy for DNA origami March 17th, 2017

Nanoelectronics

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

A SOI wafer is a suitable substrate for gallium nitride crystals: Improved characteristics in power electronics and radio applications can be achieved by using a SOI wafer for gallium nitride growth March 4th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Announcements

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project