Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Columbia Researchers Bring Nanotech's Promise a Step Closer to Reality

Abstract:
Scientists one step closer to achieving previously unimagined possibilities

Columbia Researchers Bring Nanotech's Promise a Step Closer to Reality

August 22, 2005

Scientists at Columbia University's Nanoscience Center have solved a fundamental, and to date, highly elusive challenge in the fast-developing world of nanotech-molecular electronic devices.

In the July 22nd issue of Science, Colin Nuckolls, an associate professor of chemistry, and his colleagues George Tulevski, Matt Myers, Michael Steigerwald, along with Mark S. Hybertsen, from the department of applied physics and applied mathematics, describe how they created a so-called electricity-bridge to allow current to flow efficiently between molecules and nano-sized metals, a process necessary for molecular electronic device construction.

The discovery -- involving the ability to construct materials or machines on nano-scales (a nanometer is a billionth of a meter) -- brings scientists one step closer to achieving previously unimagined possibilities, including information processing with molecules, medicines from nanoparticles that vastly improve delivery and dosage, and molecule-sized robots that flow through a person's bloodstream to treat clogged arteries in heart attack or (potential heart attack) patients.

Nuckolls' research team at Columbia's Nanoscience Center built an effective bridge linking the molecular world with a metal (Ruthenium) that is conductive, stable and durable. The majority of experiments to date have used gold as a possible link, which does not offer good electrical conductivity, lacks endurance and doesn't have any useful subsequent chemistry.

Successful miniaturization (i.e., building nanoscale devices) requires these "electricity-bridges" since most electrical activity that is important in electronic devices occurs within just a few nanometers of an interface. "It can not be overstated how important these interfacial structures and properties are," Nuckolls says. "In a sense, interfaces are where the 'expanding nano' of chemistry and the 'shrinking nano' of electronics meet." In other words, he adds, "interfaces are where the rubber meets the road."

Nuckolls' research exemplifies Columbia's interdisciplinary approach and the University's effort to coordinate and harness expertise in various fields -- in this case, engineering, chemistry, mathematics, biology and numerous others to address emerging 21 st century scientific challenges.

Founded in 2001, Columbia's Nanoscience Center draws upon years of experience in chemical synthesis to design molecular structures with carefully crafted properties. Its work has the potential to impact major disciplines in addition to electronics including photonics, biology, neuroscience and medicine. For more information, please visit the Nanoscience Center.

####


Copyright © Columbia University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Harris & Harris Group Notes Announcements by Its Portfolio Companies During the Third Quarter of 2016 September 30th, 2016

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Nanosensors could help determine tumors’ ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Molecular Machines

NIST illuminates transfer of nanoscale motion through microscale machine September 14th, 2016

Measuring forces in the DNA molecule: First direct measurements of base-pair bonding strength September 13th, 2016

A versatile method to pattern functionalized nanowires: A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of 'nanowires,' providing a new tool for the development of novel nanodevices September 9th, 2016

Legions of nanorobots target cancerous tumors with precision: Administering anti-cancer drugs redefined August 16th, 2016

Nanomedicine

Harris & Harris Group Notes Announcements by Its Portfolio Companies During the Third Quarter of 2016 September 30th, 2016

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Nanosensors could help determine tumors’ ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Nanoelectronics

Mexican scientist in the Netherlands seeks to achieve data transmission ... speed of light September 20th, 2016

GLOBALFOUNDRIES to Deliver Industry’s Leading-Performance Offering of 7nm FinFET Technology: Company extends its leading-edge roadmap for products demanding the ultimate processing power September 15th, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

A versatile method to pattern functionalized nanowires: A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of 'nanowires,' providing a new tool for the development of novel nanodevices September 9th, 2016

Announcements

Harris & Harris Group Notes Announcements by Its Portfolio Companies During the Third Quarter of 2016 September 30th, 2016

INVECAS to Enable ASIC Designs for Tomorrow’s Intelligent Systems on GLOBALFOUNDRIES' FDX™ Technology: INVECAS to Collaborate with GLOBALFOUNDRIES to Provide IP and End-to-End ASIC Design Services on 22FDX® and 12FDX™ Technologies September 30th, 2016

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic