Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers Carve with Electricity at the Nanometer Scale

Abstract:
Process may yield miniscule molecular detection devices, semiconducting connectors and molecular sieves

Researchers Carve with Electricity at the Nanometer Scale

August 18, 2005

By applying electric current through a thin film of oil molecules, engineers have developed a new method to precisely carve arrays of tiny holes only 10 nanometers wide into sheets of gold. The new system, called Electric Pen Lithography (EPL), uses a scanning-tunneling microscope, fitted with a tip sharpened to the size of a single atom, to deliver the charge through the dielectric oil to the target surface.

Electric Pen Lithography, Ajay Malshe, University of Arkansas
Using their new Electric Pen Lithography technique, University of Arkansas researchers carved the letters "NSF" into a gold sheet. The holes are only 10 nanometers in diameter. Copyright © and Credit: Ajay Malshe, University of Arkansas
Click on image for larger version.

With EPL, the researchers can both see and manipulate their target at the same time, all without the constraints of the vacuum chamber required by similar processes. With such tight control, the researchers hope the relatively inexpensive procedure will have applications for crafting single DNA detection devices such as nanopores, nanoscale interconnects in biological and semiconducting devices, molecular sieves for protein sorting and nanojets for fuel or drug delivery.

Mechanical engineer Ajay Malshe of the University of Arkansas, his students Kumar Virwani and Devesh Deshpande, and co-investigator Kamalakar Rajurkar of the University of Nebraska, Lincoln will present the new innovation at the International Institution for Production Engineering Research General Assembly in Antalya, Turkey, Aug. 21-27.

For additional information, see the University of Arkansas release:
Oil Worth Its Weight in Gold in Directed Nanomachining

This research was supported by NSF Grant #0423698
Collaborative Research: Development Of Nano-Electrical Discharge Machining (NANO-EDM) For Advanced Manufacturing

####

About the National Science Foundation:
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.47 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 40,000 competitive requests for funding, and makes about 11,000 new funding awards. The NSF also awards over $200 million in professional and service contracts yearly.

For more information, please visit www.NSF.gov

Media Contacts:
Joshua A. Chamot
NSF
(703) 292-7730
jchamot@nsf.gov

Melissa Blouin
University of Arkansas
(479) 575-3033
blouin@uark.edu

Program Contacts:
Kevin W. Lyons
NSF
(703) 292-5365
klyons@nsf.gov

Principal Investigators:
Ajay P. Malshe
University of Arkansas
(479) 575-6561
apm2@engr.uark.edu

Related Websites:
Ajay Malshe homepage

Copyright NSF

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Announcements

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Tools

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

A new cheap and efficient method to improve SERS, an ultra-sensitive chemical detection technique October 28th, 2014

New Compact SIMS at 61st AVS | Visit us on Booth 311 October 28th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE