Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > MU Researchers Develop New Source of Energy Using Nanotechnology

Abstract:
Reaction Can Occur in Microseconds on Surfaces as Small as Microchips

MU Researchers Develop New Source of Energy Using Nanotechnology

Comlubia, MO | August 16, 2005

Countries across the world continue to search for new ways to create energy. As our current means for energy continue to deplete, thus making them more expensive to generate, governments are searching for new energy resources. Researchers at the University of Missouri-Columbia have developed a more efficient source of energy involving nano-scale particles that take only microseconds to create and can be developed on a surface as small as a microchip.

"This technology is considerably less expensive than existing chemical and physical processes," said Shubhra Gangopadhyay, professor of electrical engineering at MU. "It creates high amounts of mechanical and thermal energy and can convert that energy into electrical energy. So, the possibilities are endless in terms of what this energy can do."

The energy is developed using solid state energetic material consisting of fuel and oxidizer. The nano-engineered energetic material generates a tremendous amount of thermal and mechanical energy when ignited. Electric power is generated using the thermoelectric effect. The microfabricated devices coated with the energetic material are capable of producing tens of joules, which are units of energy, in the fraction of a second, which can be used for pulsed power applications or can be stored in charge storage devices for later use in portable electronics.

Power also is generated by converting mechanical energy produced by shock waves into electrical energy utilizing piezoelectric materials, which are materials where the positive and negative electrical charges are separated, but symmetrically distributed, so that the material overall is electrically neutral. MU researchers currently are working on the process to couple the thermoelectric and piezoelectric effect to produce energy on a single chip.

Gangopadhyay says there currently are no obstacles to overcome with the research. She points out that the process can be done on glass without affecting its surface and does not necessarily need electricity to start it. All that is needed is friction or impact.

The researchers currently are seeking a patent for this technology.

####
Contact:
Jeffrey Neu
Sr. Information Specialist
573-882-3346
NeuJ@missouri.edu

Copyright University of Missouri-Columbia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Materials/Metamaterials

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

TUBALL nanotube-based concentrates recognised as the most innovative raw material for composites by JEC Group November 7th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Energy

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project