Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Technology holds promise for infrared camera

Abstract:
Technology has the potential for broad application in the detection of terrorist activities

Technology holds promise for infrared camera

August 11, 2005

New technology developed at Northwestern University has the potential for broad application in the detection of terrorist activities such as missile attacks on U.S. troops. Scientists at the Center for Quantum Devices (CQD) have demonstrated, for the first time, uncooled infrared imaging using type-II superlattice technology. This significant development could lead to smaller, faster and less expensive hand-held infrared imaging devices.

High-speed infrared (IR) imagers are capable of sensing thermal profiles of missiles and other objects that emit heat above that of the background. These devices also have potential in medical applications where excessive heating or cooling in the body can indicate trouble, such as inflammation, circulation issues or even cancerous tissue.

Manijeh Razeghi

CQD Director Dr. Manijeh Razeghi
“For most practical applications, high-speed operation with handheld portability is especially important,” said CQD director Manijeh Razeghi, who led the research team. “Uncooled imagers are capable of handheld operation, which is critical in situations with soldiers on the battlefield or with firefighters in a smoke-filled environment. Cooled sensors, on the other hand, typically utilize liquid nitrogen for cooling to minus 200 degrees Celsius, making the sensors expensive and bulky.”

Type-II superlattices were first proposed by Nobel laureate Leo Esaki in 1973 and were then proposed for use in infrared detection in 1977. It wasn’t until semiconductor epitaxial growth techniques such as molecular beam epitaxy were sufficiently advanced in the 1990s, however, that high-performance infrared photon detection was fully demonstrated.

Currently, silicon microbolometer sensors, which operate on a thermal response principle -- as opposed to photonic response -- are capable of operating at room temperature but are orders of magnitude slower than photon detectors. Photon detectors detect light at infrared wavelengths and convert it directly to an electrical signal, whereas thermal detectors are physically heated by the infrared signal, which changes the resistance of the detector element creating a varying electrical signal, and is a much slower process. Thus type-II superlattices, which are photon detectors, are far more suitable for many applications requiring high-speed operation, such as missile detection.

With a strong program in photonic III-V material growth, device fabrication and development, CQD researchers were the first to demonstrate an imaging type-II superlattice focal plane array, and were also the first to demonstrate uncooled photo detection using type-II superlattice structures.

Recently CQD researchers have demonstrated an uncooled 256 by 256 pixel camera using an InAs/GaSb type-II superlattice, which can detect variations in temperature on the surface of a hot soldering iron while operating at room temperature (with a cutoff wavelength of 5 microns).

“The type-II superlattice will become the next generation infrared material replacing mercury cadmium telluride, or MCT,” said Razeghi, who is Walter P. Murphy Professor of Electrical and Computer Engineering. “MCT has many limitations, especially in the longer wavelength infrared range critical for missile detection, and we have demonstrated type-II detectors from three all the way up to 32 microns.”

Razeghi’s research group has been in very active pursuit of uncooled infrared photon detection. In their work, the researchers fabricated the focal plane arrays using the superlattice materials grown with an Intevac Mod Gen II solid-source molecular beam epitaxy system. At room temperature, the detectivity (the unit of measure to compare detector performance) was around 109 cm·Hz1/2/W.

The work performed at CQD has generated much interest in type-II superlattice research and has brought funding from the U.S. Missile Defense Agency, U.S. Air Force Research Laboratory, Office of Naval Research and Defense Advanced Research Projects Agency, as well as collaborations with Rockwell Scientific Company, Naval Research Laboratory, Jet Propulsion Laboratory and Raytheon Company.

(Source contact: Manijeh Razeghi at 847-491-7251 or razeghi@ece.northwestern.edu)

####


(Ed.'s Note: I asked Megan Fellman to help me out with an explanation as to how this technology fit in the "nano-enabled" category. Megan put me in touch with Professor Razeghi, who in turn provided the following explanation:

"The super lattices use an atomic engineering technique. Atomic layers are deposited one after the other, each layer only a few nanometers thick. The camera has a total of 65,536 pixels, with each pixel connected to a transistor on the read-out integrated circuit (ROIC). The goal is to make individual pixels as small as possible and the format as large as possible. This would lead to higher resolution and a larger imaging field. Groups of nano-meter dimensional pixels would also enable the detector to work at even higher temperatures. The camera is actually an artificial eye, mimicking nature, and can see infrared light."

For those of you who would like to learn more, she explains it further in the introduction to her text book Fundamental of Solid State Engineering.)

Media Contact:
Megan Fellman
(847) 491-3115
fellman@northwestern.edu

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

Sensors

Leti’s Autonomous-Vehicle System Embedded in Infineon’s AURIX Platform: Leti’s Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

New diode features optically controlled capacitance: Israeli researchers have developed a new optically tunable capacitor with embedded metal nanoparticles, creating a metal-insulator-semiconductor diode that is tunable by illumination. June 8th, 2017

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Announcements

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Homeland Security

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Nanobionic spinach plants can detect explosives: After sensing dangerous chemicals, the carbon-nanotube-enhanced plants send an alert November 2nd, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Military

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project