Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Tiny infrared laser holds promise as weapon against terror

Abstract:
Researchers have demonstrated a specialized diode laser that holds promise as a weapon of defense in both civilian and military applications

Tiny infrared laser holds promise as weapon against terror

Evanston, IL | August 05, 2005

The difficulty of detecting the presence of explosives and chemical warfare agents (CWAs) is once again all too apparent in the news about the London bombings.

In a significant breakthrough, researchers at Northwestern University’s Center for Quantum Devices have demonstrated a specialized diode laser that holds promise as a weapon of defense in both civilian and military applications. Once optimized, the tiny laser could quickly detect explosives and CWAs early and warn against possible threats.

The Northwestern team, led by center director Manijeh Razeghi, became the first to create a quantum cascade laser (QCL) that can operate continuously at high power and at room temperature with an emission wavelength of 9.5 microns and a light output of greater than 100 milliwatts.

Existing standard diode lasers, such as those used to read compact discs or barcodes, do not operate effectively in the longer wavelengths that are required to detect CWAs. The challenge for researchers around the world has been to develop a portable laser that operates in the far-infrared (wavelengths of 8 to 12 microns). Every chemical has a unique “fingerprint” because it absorbs light of a specific frequency, and most CWAs fall in the 8 to 12 micron region.

“Our achievement is critical to building an extremely sensitive chemical detection system,” said Razeghi, Walter P. Murphy Professor of Electrical and Computer Engineering. “One of the key elements in a successful system is the laser source. Both mid- and far-infrared diode lasers need to operate at room temperature, have high power -- greater than 100 milliwatts -- and be extremely small in order to keep the system portable. We have now demonstrated such a laser in the far-infrared wavelength range.”

This research is part of a three-year program called Laser Photoacoustic Spectroscopy (LPAS) funded by the Defense Advanced Research Projects Agency (DARPA). The goal of the program is to develop a man-portable system that can warn against a large number of potential threats using mid- and far-infrared diode lasers. Once optimized, such lasers would be a very reliable means of detecting explosives and chemical warfare agents while distinguishing them from benign chemicals present in the atmosphere.

During the next two years Razeghi and her team will work to put together a detection system based on the center’s far-infrared laser. The system will then be evaluated by DARPA for use by the military.

Northwestern is a world leader in high-power QCL research. The Center for Quantum Devices was the first university research lab in the world to successfully grow, fabricate and test quantum cascade lasers back in 1997. By utilizing quantum mechanical design principles and advanced crystal growth techniques, the QCL is able to demonstrate high-power and high-temperature operation.

After the initial demonstration of room-temperature pulsed lasers in 1997, the primary efforts of Razeghi and her colleagues over the past several years have been to increase the laser’s operating temperature, power output and efficiency in order to achieve the continuous operation necessary for sensitive chemical analysis.

In 2003 the center was the first to demonstrate high-power mid-wavelength infrared continuous wave QCLs operating above room temperature. (Like the far infrared, standard diode lasers cannot access this mid-infrared range.) At present, individual devices with output powers of several hundred milliwatts have been demonstrated in the 3 to 5 microns wavelength range.

Razeghi’s research is supported by the Defense Advanced Research Projects Agency, U.S. Air Force Office of Scientific Research, the Army Research Office and the Office of Naval Research.

####

Contact:
Megan Fellman (847) 491-3115 fellman@northwestern.edu

Source contact:
Manijeh Razeghi
847-491-7251
razeghi@ece.northwestern.edu

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Sensors

Promising new method for rapidly screening cancer drugs: UMass Amherst researchers invent fast, accurate new nanoparticle-based sensor system December 15th, 2014

Graphene Applied in Production of Recyclable Electrodes December 13th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Nanosensor to Detect Naproxen Drug Produced in Iran December 6th, 2014

Announcements

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Homeland Security

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Laser sniffs out toxic gases from afar: System can ID chemicals in the atmosphere from a kilometer away December 4th, 2014

Better bomb-sniffing technology: University of Utah engineers develop material for better detectors November 4th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Military

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

Nanoshaping method points to future manufacturing technology December 11th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Industrial Nanotech, Inc. Expands Government and Defense Projects December 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE