Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Study may expand applied benefits of super-hard ceramics

Abstract:
Using atomic-scale simulations, the team observed for the first time how atoms moved and interacted as a super-hard ceramic deformed under stress

Study may expand applied benefits of super-hard ceramics

Atlanta, GA | August 04, 2005

A discovery reported in the August 5 issue of Science could speed the design of materials that approach the hardness of diamond yet remain supple enough to be worked like metal.

In a massive computer simulation involving 128 computer processors and nearly 19 million atoms, materials scientist Izabela Szlufarska of the University of Wisconsin-Madison and colleagues at University of Southern California demonstrated the precise atomic mechanisms that explain why "nanostructured" ceramic materials-some of the hardest substances known-also exhibit unusual pliability.

Unlike other exceptionally hard materials, these advanced ceramics tend to bend rather than break, meaning they could be shaped into extremely long-lasting yet lightweight parts for everything from automobile engines and high-speed machining tools to medical implants in the body.

But they are also notoriously difficult to engineer, because as their name implies they possess a grain structure that falls into the nano-size range of molecules and atoms.

"How to optimize their design is an open question," says Szlufarska, who is also a professor of engineering physics. "People have used a trial and error approach to make these materials harder. But there is still much to be understood as to why they are harder."

Simulations can help to answer this by providing a level of detail unavailable to experiments. Using atomic-scale simulations, the team observed for the first time how atoms moved and interacted as a super-hard ceramic deformed under stress. The advance has not only provided unprecedented insight into the properties of these materials, but also a tool that researchers can use to systematically nano-engineer them.

"This study is just the first step," says Szlufarska. "The goal is to design the strongest material possible."

The particular nanostructured ceramic Szlufarska focuses on, called nanocrystalline silicon carbide, is also exceptionally resistant to high temperature and radiation, which has NASA eyeing it as a coating for the space shuttle. Another important application is micro-electro mechanical systems (MEMS), tiny machines that are currently made of silicon.

"Today's MEMS can't have two surfaces rubbing against one another because the silicon is brittle and tends to break," says Szlufarska. "If we could instead make MEMS out of silicon carbide, the sky would be the limit in terms of applications."

Normal ceramics, like clays, become brittle when fired. But when ceramic is made from particles spanning mere atoms in diameter, the material exhibits dramatically improved ductility after bonding at high temperature and pressure.

This unusual combination of strength and suppleness is derived from the material's two-phase nature. In nanocrystalline silicon carbide, says Szlufarska, highly ordered, crystalline grains are surrounded by a more disordered, or amorphous, matrix of grain boundaries-much like tiny stones cemented by a semi-fluid mortar. And the volume of grain boundaries exceeds that in other nanostructured materials such as metals.

To understand, at the atomic scale, how nanocrystalline silicon carbide deforms under force, the team performed a simulation in which they pressed a tiny, virtual probe, called an indenter, into the material's surface and watched how the atoms moved in response. Initially, the grains deformed and then sprang back as a unit, an illustration of the material's hardness.

"At this point, the grains all moved together because the grain boundaries held them together like glue," says Szlufarska.

But as the probe pressed deeper and exerted greater pressure, the researchers witnessed a surprising shift in the material's response. At a specific indentation depth, the grain boundaries began to yield, allowing individual grains to rotate and glide independently under the probe's force.

"Because the grain boundaries are flowing, the material is more ductile than normal ceramic would be," says Szlufarska. "And the grain boundaries initially take part of the deformation, so in essence they protect the grains from breaking."

In contrast, nano-structured metals go through no such phase; instead their grains take the brunt of the force, immediately developing defects, like tiny cracks, when the material begins to yield.

"Once defects occur in the system, the system is just weaker and it's going to break," says Szlufarska.

This crossover in response-from cooperative grain movement and hardness, to individual movement and ductility-is unique to nano-structured ceramics, she says. The researchers next want to learn how to control the crossover point so as to engineer greater hardness into nano-crystalline silicon carbide without compromising pliability. For example, they could vary the volume of the grain boundaries or the size of the grains. Impurities, or dopants, might also be added to the grain boundaries to make the material stronger.

Key to it all is the enormous computing power that allows scientists to simulate the material's atomic details.

"The experiments and devices have become smaller and smaller, while the simulations have grown larger and larger," says Szlufarska. "This is a unique time when the leading edge of materials design is exactly at the same length scale where fully atomic simulations are possible."

####

Contact:
Izabela Szlufarska
608-234-2622
izabela@engr.wisc.edu

Madeline Fisher
(608) 265-8592
mmfisher@engr.wisc.edu

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

MEMS

MEMS Industry Group's 10th Annual Executive Conference Showcases Rapid Innovation in MEMS/Sensors: Emphasizes Spirit of Collaboration, Supporting First Open-Source Algorithm Community, New Standardization Efforts November 10th, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Discoveries

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Materials/Metamaterials

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Graphene Applied in Production of Recyclable Electrodes December 13th, 2014

A golden thread through the labyrinth of nanomaterials December 12th, 2014

Announcements

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Tools

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

DELMIC reports on applications of their SPARC technology at the Chalmers University of Technology in Gothenburg, Sweden December 16th, 2014

Aerospace/Space

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

NEI introduces NANOMYTE® SuperAi, a Durable Anti-ice Coating December 4th, 2014

Atmospheric carbon dioxide used for energy storage products December 2nd, 2014

Deep Space Industries and Solid Prototype Announce a Strategic Partnership: Solid Prototype Inc integrates with DSI’s spacecraft design process, helping reduce costs and decrease turnaround time December 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE