Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Study may expand applied benefits of super-hard ceramics

Abstract:
Using atomic-scale simulations, the team observed for the first time how atoms moved and interacted as a super-hard ceramic deformed under stress

Study may expand applied benefits of super-hard ceramics

Atlanta, GA | August 04, 2005

A discovery reported in the August 5 issue of Science could speed the design of materials that approach the hardness of diamond yet remain supple enough to be worked like metal.

In a massive computer simulation involving 128 computer processors and nearly 19 million atoms, materials scientist Izabela Szlufarska of the University of Wisconsin-Madison and colleagues at University of Southern California demonstrated the precise atomic mechanisms that explain why "nanostructured" ceramic materials-some of the hardest substances known-also exhibit unusual pliability.

Unlike other exceptionally hard materials, these advanced ceramics tend to bend rather than break, meaning they could be shaped into extremely long-lasting yet lightweight parts for everything from automobile engines and high-speed machining tools to medical implants in the body.

But they are also notoriously difficult to engineer, because as their name implies they possess a grain structure that falls into the nano-size range of molecules and atoms.

"How to optimize their design is an open question," says Szlufarska, who is also a professor of engineering physics. "People have used a trial and error approach to make these materials harder. But there is still much to be understood as to why they are harder."

Simulations can help to answer this by providing a level of detail unavailable to experiments. Using atomic-scale simulations, the team observed for the first time how atoms moved and interacted as a super-hard ceramic deformed under stress. The advance has not only provided unprecedented insight into the properties of these materials, but also a tool that researchers can use to systematically nano-engineer them.

"This study is just the first step," says Szlufarska. "The goal is to design the strongest material possible."

The particular nanostructured ceramic Szlufarska focuses on, called nanocrystalline silicon carbide, is also exceptionally resistant to high temperature and radiation, which has NASA eyeing it as a coating for the space shuttle. Another important application is micro-electro mechanical systems (MEMS), tiny machines that are currently made of silicon.

"Today's MEMS can't have two surfaces rubbing against one another because the silicon is brittle and tends to break," says Szlufarska. "If we could instead make MEMS out of silicon carbide, the sky would be the limit in terms of applications."

Normal ceramics, like clays, become brittle when fired. But when ceramic is made from particles spanning mere atoms in diameter, the material exhibits dramatically improved ductility after bonding at high temperature and pressure.

This unusual combination of strength and suppleness is derived from the material's two-phase nature. In nanocrystalline silicon carbide, says Szlufarska, highly ordered, crystalline grains are surrounded by a more disordered, or amorphous, matrix of grain boundaries-much like tiny stones cemented by a semi-fluid mortar. And the volume of grain boundaries exceeds that in other nanostructured materials such as metals.

To understand, at the atomic scale, how nanocrystalline silicon carbide deforms under force, the team performed a simulation in which they pressed a tiny, virtual probe, called an indenter, into the material's surface and watched how the atoms moved in response. Initially, the grains deformed and then sprang back as a unit, an illustration of the material's hardness.

"At this point, the grains all moved together because the grain boundaries held them together like glue," says Szlufarska.

But as the probe pressed deeper and exerted greater pressure, the researchers witnessed a surprising shift in the material's response. At a specific indentation depth, the grain boundaries began to yield, allowing individual grains to rotate and glide independently under the probe's force.

"Because the grain boundaries are flowing, the material is more ductile than normal ceramic would be," says Szlufarska. "And the grain boundaries initially take part of the deformation, so in essence they protect the grains from breaking."

In contrast, nano-structured metals go through no such phase; instead their grains take the brunt of the force, immediately developing defects, like tiny cracks, when the material begins to yield.

"Once defects occur in the system, the system is just weaker and it's going to break," says Szlufarska.

This crossover in response-from cooperative grain movement and hardness, to individual movement and ductility-is unique to nano-structured ceramics, she says. The researchers next want to learn how to control the crossover point so as to engineer greater hardness into nano-crystalline silicon carbide without compromising pliability. For example, they could vary the volume of the grain boundaries or the size of the grains. Impurities, or dopants, might also be added to the grain boundaries to make the material stronger.

Key to it all is the enormous computing power that allows scientists to simulate the material's atomic details.

"The experiments and devices have become smaller and smaller, while the simulations have grown larger and larger," says Szlufarska. "This is a unique time when the leading edge of materials design is exactly at the same length scale where fully atomic simulations are possible."

####

Contact:
Izabela Szlufarska
608-234-2622
izabela@engr.wisc.edu

Madeline Fisher
(608) 265-8592
mmfisher@engr.wisc.edu

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

MEMS

New research unveils graphene 'moth eyes' to power future smart technologies: New ultra-thin, patterned graphene sheets will be essential in designing future technologies such as 'smart wallpaper' and Internet-of-things applications March 1st, 2016

Vesper Collaborates with GLOBALFOUNDRIES to Deliver First Piezoelectric MEMS Microphones: Acoustic sensing company works with top foundry to support mass-market consumer products January 21st, 2016

MEMS & Sensors Industry Group Previews “Internet of MEMS & Sensors” at CES 2016 -- Global industry association invites CE OEMS/integrators to conference track on January 7 January 6th, 2016

SITRI and Accelink Announce Cooperative Agreement on Opto-Electronic Communication December 31st, 2015

Discoveries

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Materials/Metamaterials

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Announcements

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Tools

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

More light on cancer: Scientists created nanoparticles to highlight cancer cells May 21st, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Aerospace/Space

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

We’ll Leave the Lights On For You: Photonics advances allow us to be seen across the universe, with major implications for the search for extraterrestrial intelligence, says UC Santa Barbara physicist Philip Lubin - See more at: http://www.news.ucsb.edu/2016/016805/we-ll-leave-li May 17th, 2016

Smithsonian Science Education Center and National Space Society Team Up for Next-Generation Space Education Program "Enterprise In Space" May 11th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic