Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > 'Smart' nanoprobes light up disease

Abstract:
Quantum dots programmed to glow in presence of enzyme activity

'Smart' nanoprobes light up disease

Center for Biological and Environmental Nanotechnology (CBEN)

Houston, TX | August 01, 2005

Researchers from Rice University's Center for Biological and Environmental Nanotechnology (CBEN) have developed a "smart" beacon hundreds of times smaller than a human cell that is programmed to light up only when activated by specific proteases. Altered expression of particular proteases is a common hallmark of cancer, atherosclerosis, and many other diseases.

In the September issue of the journal Biochemical and Biophysical Research Communications, lead authors Jennifer West, the Isabel C. Cameron Professor of Bioengineering and director of CBEN's biological research program, and Rebekah Drezek, the Stanley C. Moore Assistant Professor of Bioengineering and assistant professor of electrical and computer engineering, describe development of a new nanoprobe for visualization of proteolytic activity in vivo.

"The idea is to develop a 'smart' nanostructure that is dark in its original state but lights up very brightly in the presence of enzymatic activity associated with a particular disease process," said West. "Other groups have used targeted nanostructures including quantum dots for molecular imaging, but they have never been able to adequately solve the problem of clearly distinguishing between the 'cancer is here' signal and the background light which arises from nanostructures not specifically bound to their molecular targets."

Rice's technology solves this longstanding problem by using emissive nanoparticles called quantum dots that give off light in the near-infrared (NIR), a rare portion of the spectrum that has no background component in biomedical imaging. Near-infrared light also passes harmlessly through skin, muscle and cartilage, so the new probes could alert doctors to tumors and other diseases sites deep in the body without the need for a biopsy or invasive surgery.

The probe's design makes use of a technique called "quenching" that involves tethering a gold nanoparticle to the quantum dot to inhibit luminescence. The tether, a peptide sequence measuring only a few nanometers, or billionths of a meter, holds the gold close enough to prevent the quantum dot from giving off its light.

In their test system, the Rice team used a peptide tether that is cleaved by the enzyme collagenase. The researchers first showed that luminescence of the quantum dots was cut by more than 70 percent when they were attached to the gold particles. They remained dark until the nanostructures were exposed to collagenase after which the luminescence steadily returned.

Ultimately, the researchers hope to pair a series of quantum dots, each with a unique NIR optical signature, to an index of linker proteases.

"There is currently a critical need for methods to simultaneously image the activity of multiple proteases in vivo," said Drezek. "This is important not only for early detection of several diseases, but perhaps more significantly, in understanding and monitoring the efficacy of therapeutic interventions, including the growing class of drugs that act as protease inhibitors. What is particularly powerful about the protease imaging probes described in this study is the combination of the contrast enhancement achievable through an activateable probe with the imaging advantages provided by the brightness, photostability, and tunability of quantum dots."

CBEN research is funded by the National Science Foundation.

####

Contact:
Jade Boyd
(713) 348-6778
jadeboyd@rice.edu

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Nanomedicine

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Announcements

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project