Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Single molecule is in driver’s seat of molecular machine

Molecular machines can be driven individually by applying an electric current

Single molecule is in driver’s seat of molecular machine

Evanston, IL | July 29, 2005

While the human body has plenty of specialized molecular motors and machines powering the mechanical work necessary for cells to function properly, scientists themselves face many hurdles as they try to create their own molecular machines in the laboratory.

The downsides of conventional molecular machines are that they are driven as an ensemble, by external light or chemistry, for example, and they are big -- made up of many molecules. These factors make these machines difficult to control.

In a theoretical paper published in the journal Physical Review Letters, two Northwestern University chemists have shown how molecular machines can be driven individually (relying on only one molecule) by applying an electric current that creates an internal energy source.

“People envision using molecular machines for computing techniques, sensors, bioengineering and solar cells, for example,” said Tamar Seideman, professor of chemistry, who led the research team. “Molecular machines have unique functions and properties that are different from macroscopic machines, not only and not primarily because they are of the nanoscale. Rather, they use truly molecular features such as their energy level structure, their dynamics and their response to external stimuli.

“The many beautiful examples already in the literature include analogues of mechanical devices that operate on the molecular scale, such as shuttles, brakes, ratches, turnstiles and rotors. For some applications, such as drug delivery, it doesn’t matter that the molecules are randomly oriented, but the majority of applications require the molecular machines to be driven individually in a coherent and controllable manner.”

In their proposed molecular machine, Seideman and Chao-Cheng Kaun, a post-doctoral fellow in Seideman’s lab, place a small carbon molecule (C60), known as a fullerene or “buckyball,” in between two gold electrodes. (This is called a molecular junction.) When an electric current is run through the electrodes, the electrons transfer energy to the molecule, causing the molecule to vibrate and creating an internal energy source.

Essentially, the buckyball oscillates between the electrodes, as if on an invisible spring. Because the conductivity of this tiny junction depends strongly on the location of the buckyball between the electrodes, the current oscillates with time at the frequency of the C60 oscillations. The spontaneous oscillating current translates into an oscillating electromagnetic field, so the fullerene junction becomes a nanoscale generator of a radiation field -- something not demonstrated before.

Because the single molecule can be driven individually the resulting motion can be controlled, giving an advantage to such a molecular machine.

“The results are very exciting,” said Seideman. “Since we understand the processes that produce the movement we can control the dynamics and hence hope to make use of this tiny molecular motor. We are encouraged by the rapid progress of experimental methods of making little molecular junctions of this type.”

The research was supported by the National Science Foundation under grant CHEM/MRD - 0313638.

(Source contact: Tamar Seideman at 847-467-4979 or


Megan Fellman
(847) 491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Nanosciences: Genes on the rack October 21st, 2016

Physicists use lasers to capture first snapshots of rapid chemical bonds breaking October 21st, 2016

Nanoparticle vaccinates mice against dengue fever October 21st, 2016

New perovskite solar cell design could outperform existing commercial technologies: Stanford, Oxford team creates high-efficiency tandem cells October 21st, 2016

Molecular Machines

Scientists develop a semiconductor nanocomposite material that moves in response to light October 17th, 2016

UCLA chemists report new insights about properties of matter at the nanoscale: Research may lead to new, smaller molecular machines October 9th, 2016

CNRS molecular machine pioneer Jean-Pierre Sauvage receives the 2016 Nobel prize in chemistry October 6th, 2016

A Northwestern Nobel Prize: Sir Fraser Stoddart of Northwestern University is awarded the Nobel Prize in Chemistry October 5th, 2016

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project