Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > One-atom-thick materials promise a 'new industrial revolution'

Abstract:
Scientists at The University of Manchester have discovered a new class of materials which have previously only existed in science fiction films and books

One-atom-thick materials promise a 'new industrial revolution'

July 21, 2005

A team of British and Russian scientists led by Professor Geim have discovered a whole family of previously unknown materials, which are one atom thick and exhibit properties which scientists had never thought possible.

Not only are they ultra-thin, but depending on circumstances they can also be ultra-strong, highly-insulating or highly-conductive, offering a wide range of unique properties for space-age engineers and designers to choose from.

Professor Andre Geim said: "This discovery opens up practically infinite possibilities for applications which people have never even thought of yet. These materials are lightweight, strong and flexible, and there is a huge choice of them. This is not only about smart gadgets. Like polymers whose pervasiveness changed our everyday life forever, one-atom-thick materials could be used in a myriad of routine applications from clothing to computers."

The materials have been created by extracting individual atomic planes from conventional bulk crystals by using a technique called 'micromechanical cleavage.' Depending on a parent crystal, their one-atom-thick counterparts can be metals, semiconductors, insulators, magnets, etc. Previously, it was thought that such thin materials could not exist in principle, but the research team have, for the first time, demonstrated that they are not only possible but fairly easy to make.

They found that the atomically thin sheets they extracted were not only stable under ambient conditions but also exhibited extremely high crystal quality, which is what gives them their unique properties.

Dr Kostya Novoselov, a key investigator in this research, added: "Probably the most important part is that our discovery is not limited to just one or two new materials. It is a whole class of new materials, thousands of them. And they have a variety of properties, allowing one to choose a material most appropriate for a particular application.

"Although some of the applications are probably decades away, I expect to see ultra-fast transistors, micromechanical devices and nano-sensors based on the discovered one-atom-thick crystals already in a few years time."

The findings are published today (18 July, 2005) in the Proceedings of the National Academy of Sciences. The paper is entitled: 'Two Dimensional Atomic Crystals'. In conclusion it reads: "We have now demonstrated the existence of 2D atomic crystals and believe that, once investigated and understood, it will be possible for them to be grown in large sizes required for industrial applications."

####

Notes to Editors:

  • Professor Andre Geim is Director of Manchester Centre for Mesoscience and Nanotechnology and Chair of Condensed Matter Physics at the University of Manchester's School of Physics and Astronomy within the Faculty of Engineering and Physical Sciences.
  • In October 2004 Professor Geim discovered the first example of such one-atom-thick materials. The material was named Graphene (see press release: link).


Media Contact:
Jo Grady
Media Relations Officer
0161 2752018

Copyright © University of Manchester

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Discoveries

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Materials/Metamaterials

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Announcements

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project