Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Temperature-sensitive Nanobrushes

Abstract:
Electrically conducting polymer with temperature-dependent optical properties and water solubility

Temperature-sensitive Nanobrushes

July 13, 2005

The terms plastic and electrical current usually bring to mind such things as insulators or computer cases. It goes without saying that plastics are insulators, right? The discovery of conducting polymers actually resulted in a Nobel Prize in Chemistry for A.J. Heeger, A.G. MacDiarmid and H. Shirakawa in 2000 - "plastic electronics" are on the move. An American team has now developed a conducting polythiophene that demonstrates amazingly high water solubility and responds to the surrounding temperature as well.

Why the interest in electrically conducting polymers that are water-soluble? Water solubility allows for more environmentally friendly production processes. In addition, it is a requirement for many biological and diagnostic applications. Certain conducting polymers also respond to changes in their environment by a color change. This is just the thing for sensors that detect specific analyte molecules or indicate other parameters.

Polythiophenes, the most economically important class of conducting polymers, consist of long chains of five-membered rings containing four carbon atoms and one sulfur atom. Researchers led by Robin L. McCarley at Louisiana State University attached chains of a polyacrylamide derivative to a polythiophene backbone like bristles on the handle of a bottle brush. The "bristles" make the molecular "brushes" the most water-soluble neutral polythiophenes found to date.

But these bristles can do more: they respond sensitively to temperature changes. At temperatures under 30 C, the brushes are in an irregular, stretched-out form and are loaded with water molecules. If the temperature is raised above 32 C, these structures collapse into compact spheres, pushing the water molecules out. As a result, the entire brush responds to the conformational change of its bristles. From a stretched-out, only slightly balled-up form, it pulls itself into a compact spherical structure. This change decreases the water solubility of the brushes. More significantly, at the same time, the color changes; whereas a solution of the brushes at low temperature is orange-red in appearance, higher temperatures cause the color to change to yellow. This change in color indicates shifts in the electrical properties of the backbone.

Such water-soluble polymeric brushes, which react to external stimulation by changing their opto-electronic properties, could be used for biosensors in bioelectronics, as nanoswitches, light-emitting diodes, or fluorescence thermometers.

Author: Robin L. McCarley, Louisiana State University, Baton Rouge (USA),

####

Contact:
Editorial office
angewandte@wiley-vch.de

David Greenberg (US)
dgreenbe@wiley.com

Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Sensors

New chip architecture may provide foundation for quantum computer: Researchers at the Georgia Tech Research Institute have developed a microfabricated ion trap architecture that holds promise for increasing the density of qubits in future quantum computers May 5th, 2015

Iranian Scientists Present Model to Study Mechanical Vibrations of Structures Containing Nanocomposites May 5th, 2015

Making robots more human April 29th, 2015

Simultaneous Measurement of Drugs Made Possible by Nanosensors April 29th, 2015

Announcements

'Microcombing' creates stronger, more conductive carbon nanotube films May 5th, 2015

Testing Facility for Graphene Enhanced Composite Pipes May 5th, 2015

Arrowhead Completes Dosing Healthy Volunteers and Initiates Transition to Patients in Phase 1 Study of ARC-AAT May 5th, 2015

Silicon Storage Technology and GLOBALFOUNDRIES Announce Qualification of Automotive Grade 55nm Embedded Flash Memory Technology May 5th, 2015

Environment

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Nanoparticles Used to Improve Mechanical, Thermal Properties of Cellulose Fibers April 23rd, 2015

Young NTU Singapore spin-off clinches S$4.3 million joint venture with Chinese commercial giant March 23rd, 2015

New processing technology converts packing peanuts to battery components March 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project