Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Temperature-sensitive Nanobrushes

Abstract:
Electrically conducting polymer with temperature-dependent optical properties and water solubility

Temperature-sensitive Nanobrushes

July 13, 2005

The terms plastic and electrical current usually bring to mind such things as insulators or computer cases. It goes without saying that plastics are insulators, right? The discovery of conducting polymers actually resulted in a Nobel Prize in Chemistry for A.J. Heeger, A.G. MacDiarmid and H. Shirakawa in 2000 - "plastic electronics" are on the move. An American team has now developed a conducting polythiophene that demonstrates amazingly high water solubility and responds to the surrounding temperature as well.

Why the interest in electrically conducting polymers that are water-soluble? Water solubility allows for more environmentally friendly production processes. In addition, it is a requirement for many biological and diagnostic applications. Certain conducting polymers also respond to changes in their environment by a color change. This is just the thing for sensors that detect specific analyte molecules or indicate other parameters.

Polythiophenes, the most economically important class of conducting polymers, consist of long chains of five-membered rings containing four carbon atoms and one sulfur atom. Researchers led by Robin L. McCarley at Louisiana State University attached chains of a polyacrylamide derivative to a polythiophene backbone like bristles on the handle of a bottle brush. The "bristles" make the molecular "brushes" the most water-soluble neutral polythiophenes found to date.

But these bristles can do more: they respond sensitively to temperature changes. At temperatures under 30 °C, the brushes are in an irregular, stretched-out form and are loaded with water molecules. If the temperature is raised above 32 °C, these structures collapse into compact spheres, pushing the water molecules out. As a result, the entire brush responds to the conformational change of its bristles. From a stretched-out, only slightly balled-up form, it pulls itself into a compact spherical structure. This change decreases the water solubility of the brushes. More significantly, at the same time, the color changes; whereas a solution of the brushes at low temperature is orange-red in appearance, higher temperatures cause the color to change to yellow. This change in color indicates shifts in the electrical properties of the backbone.

Such water-soluble polymeric brushes, which react to external stimulation by changing their opto-electronic properties, could be used for biosensors in bioelectronics, as nanoswitches, light-emitting diodes, or fluorescence thermometers.

Author: Robin L. McCarley, Louisiana State University, Baton Rouge (USA),

####

Contact:
Editorial office
angewandte@wiley-vch.de

David Greenberg (US)
dgreenbe@wiley.com

Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Sensors

Journal Nanotechnology Progress International (JONPI), 2014, Volume 5, Issue 1, pp 1-24 October 22nd, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Graphenea opens US branch October 16th, 2014

IRLYNX and CEA-Leti to Streamline New CMOS-based Infrared Sensing Modules Dedicated to Human-activities Characterization October 15th, 2014

Announcements

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

Environment

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Plastic nanoparticles also harm freshwater organisms October 18th, 2014

New Nanocomposites Help Elimination of Toxic Dyes October 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE