Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Temperature-sensitive Nanobrushes

Abstract:
Electrically conducting polymer with temperature-dependent optical properties and water solubility

Temperature-sensitive Nanobrushes

July 13, 2005

The terms plastic and electrical current usually bring to mind such things as insulators or computer cases. It goes without saying that plastics are insulators, right? The discovery of conducting polymers actually resulted in a Nobel Prize in Chemistry for A.J. Heeger, A.G. MacDiarmid and H. Shirakawa in 2000 - "plastic electronics" are on the move. An American team has now developed a conducting polythiophene that demonstrates amazingly high water solubility and responds to the surrounding temperature as well.

Why the interest in electrically conducting polymers that are water-soluble? Water solubility allows for more environmentally friendly production processes. In addition, it is a requirement for many biological and diagnostic applications. Certain conducting polymers also respond to changes in their environment by a color change. This is just the thing for sensors that detect specific analyte molecules or indicate other parameters.

Polythiophenes, the most economically important class of conducting polymers, consist of long chains of five-membered rings containing four carbon atoms and one sulfur atom. Researchers led by Robin L. McCarley at Louisiana State University attached chains of a polyacrylamide derivative to a polythiophene backbone like bristles on the handle of a bottle brush. The "bristles" make the molecular "brushes" the most water-soluble neutral polythiophenes found to date.

But these bristles can do more: they respond sensitively to temperature changes. At temperatures under 30 C, the brushes are in an irregular, stretched-out form and are loaded with water molecules. If the temperature is raised above 32 C, these structures collapse into compact spheres, pushing the water molecules out. As a result, the entire brush responds to the conformational change of its bristles. From a stretched-out, only slightly balled-up form, it pulls itself into a compact spherical structure. This change decreases the water solubility of the brushes. More significantly, at the same time, the color changes; whereas a solution of the brushes at low temperature is orange-red in appearance, higher temperatures cause the color to change to yellow. This change in color indicates shifts in the electrical properties of the backbone.

Such water-soluble polymeric brushes, which react to external stimulation by changing their opto-electronic properties, could be used for biosensors in bioelectronics, as nanoswitches, light-emitting diodes, or fluorescence thermometers.

Author: Robin L. McCarley, Louisiana State University, Baton Rouge (USA),

####

Contact:
Editorial office
angewandte@wiley-vch.de

David Greenberg (US)
dgreenbe@wiley.com

Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Rare-earths become water-repellent only as they age March 22nd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

Nanoparticle paves the way for new triple negative breast cancer drug March 20th, 2017

Sensors

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

Optical fingerprint can reveal pollutants in the air: Researchers at Chalmers University of Technology have proposed a new, sophisticated method of detecting molecules with sensors based on ultra-thin nanomaterials March 15th, 2017

New optical nanosensor improves brain mapping accuracy, opens way for more applications: Potassium-sensitive fluorescence-imaging method shines light on chemical activity within the brain March 3rd, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Announcements

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

CRMGroup in Belgium uses a Deben three point bending stage in the development of new steel & coated steel products for automotive and other industrial applications March 21st, 2017

Environment

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Nanogate Expands Sustainability Management: Nanogate publishes a statement of compliance with the German Sustainability Code for the first time March 15th, 2017

Optical fingerprint can reveal pollutants in the air: Researchers at Chalmers University of Technology have proposed a new, sophisticated method of detecting molecules with sensors based on ultra-thin nanomaterials March 15th, 2017

Most Complex Nanoparticle Crystal Ever Made by Design: Possible applications include controlling light, capturing pollutants, delivering therapeutics March 2nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project