Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > New Design Developed for Silicon Nanowire Transistors

Abstract:
Transistors are less sensitive to electronic "noise" in the channel and can be turned on and off more effectively

New Design Developed for Silicon Nanowire Transistors

July 01, 2005

In an advance for nanoscale electronics, researchers at the National Institute of Standards and Technology (NIST) have demonstrated a new design for silicon nanowire transistors that both simplifies processing and allows the devices to be switched on and off more easily.

The NIST design, described in a paper published June 29 by the journal Nanotechnology,* uses a simplified type of contact between the nanowire channel and the positive and negative electrodes of the transistor. The design allows more electrical current to flow in and out of the silicon. The researchers believe the design is the first to demonstrate a "Schottky barrier" type contact for a nanowire transistor built using a "top-down" approach. This barrier, an easily formed metal contact that electrons can tunnel through, requires much less doping with impurities than do conventional ohmic contacts, thereby simplifying processing requirements. Schottky contacts also offer more resistance and restrict electrical flow to one direction when the transistor is off.

In the NIST transistor design, the 60-nanometer-wide channels exhibit a much greater difference in current between the on and off states than is true for larger reference channels up to 5 micrometers wide. This suggests that when a channel is scaled down to the nano regime, the ultra-narrow proportions significantly reduce the current leakage associated with defects in silicon. As a result, the transistors are less sensitive to electronic "noise" in the channel and can be turned on and off more effectively, according to the paper's lead author, Sang-Mo Koo, a NIST guest researcher.

Silicon nanowire devices have received considerable attention recently for possible use in integrated nanoscale electronics as well as for studying fundamental properties of structures and devices with very small dimensions. The NIST work overcomes some key difficulties in making reliable devices or test structures at nanoscale dimensions. The results also suggest that nanowire transistors made with conventional lithographic fabrication methods can improve performance in nanoscale electronics, while allowing industry to retain its existing silicon technology infrastructure.

*S.M. Koo, M.D. Edelstein, Q.Li, C.A. Richter and E.M. Vogel. 2005. Silicon nanowires as enhancement-mode Schottky barrier field-effect transistors. Nanotechnology 16. Posted online June 29.


####
Media Contact:
Laura Ost
laura.ost@nist.gov
(301) 975-4034

Copyright NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

Chip Technology

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Announcements

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic