Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > A giant step toward tiny functional nanowires

Abstract:
OWL able to produce gaps as small as 2.5 nanometers wide

A giant step toward tiny functional nanowires

Evanston, IL | June 30, 2005

Carving a telephone pole is easy if you have the right tools, say a power saw and some large chisels. And with some much tinier tools you could even carve a design into a paper clip if you wanted to. But shrink your sights down to the nanoscale, to a nanowire that is 1,000 times smaller than the diameter of a paper clip, and you find there are no physical tools to do the job properly.

So a team of Northwestern University scientists turned to chemistry and developed a new method that can routinely and cheaply produce nanowires with gaps as small as five nanometers wide -- a feat that is unattainable using conventional lithographic techniques. The results will be published in the July 1 issue of the journal Science.

Carved gaps are essential to a nanowire's function, and controlling those gaps would allow scientists and engineers to design with precision devices ranging from tiny integrated circuits to gene chips and protein arrays for diagnostics and drug discovery.

"With miniaturization happening across so many fields, our existing tools -- our chisels of a sort -- can't control the shapes and spacing of these small structures," said Chad A. Mirkin, director of Northwestern's Institute for Nanotechnology, who led the research team. "Our method allows us to selectively introduce gaps into the wires. These gaps can be filled with molecules, making them components for building small electronic and photonic devices or chemical and biological sensors."

The development of sophisticated nanoelectronics, said Mirkin, depends on the ability to fabricate and functionalize electrode gaps less than 20 nanometers wide for precise electrical measurements on nanomaterials and even individual molecules. While conventional techniques can't make gaps much smaller than 20 nanometers wide, Mirkin's method, called on-wire lithography, or OWL, has been able to produce gaps as small as 2.5 nanometers wide.

Mirkin and his team made the notched structures by first depositing into a porous template segmented nanowires made of two materials, one that is resistant to wet-chemical etching (gold) and one that is susceptible (nickel). The template is then dissolved, releasing the nanowires. Next, the wires are dispersed on a flat substrate, and a thin layer of glass is deposited onto their exposed faces. They are then suspended in solution, and a selective wet-chemical etching removes the nickel, leaving gold nanowires with well-defined gaps where the nickel used to be. (The glass is used as a bridging material, to hold the nanowire together.)

Using the OWL method, the researchers prepared nanowires with designed gaps of 5, 25, 40, 50, 70, 100, 140 and 210 nanometers wide. (A nanometer is one billionth of a meter or roughly the length of three atoms side by side. A DNA molecule is 2.5 nanometers wide.) In recent days, they have refined the technique to be able to make gaps as small as 2.5 nanometers wide.

"With dip-pen nanolithography, we can then drop into these gaps many different molecules, depending on what function we want the structure to have," said Mirkin, also George B. Rathmann Professor of Chemistry. "This really opens up the possibility of using molecules as components for a variety of nanoscale devices."

In addition to Mirkin, other authors on the Science paper are Lidong Qin (lead author), Sungho Park and Ling Huang of Northwestern University.


####

About Northwestern University:
Northwestern University is a private institution founded in 1851 to serve the Northwest Territory, an area that now includes the states of Ohio, Indiana, Illinois, Michigan, Wisconsin, and part of Minnesota. In 1853 the founders purchased a 379-acre tract of land on the shore of Lake Michigan 12 miles north of Chicago. They established a campus and developed the land near it, naming the surrounding town Evanston in honor of one of the University's founders, John Evans. After completing its first building in 1855, Northwestern began classes that fall with two faculty members and 10 students.

For more information, please visit www.northwestern.edu


Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Sensors

Successful boron-doping of graphene nanoribbon August 27th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

High Precision, High Stability XYZ Microscope Stages, with Capacitive Feedback August 18th, 2015

Setting ground rules for nanotechnology research: Two new projects set the stage for nanotechnology research to move into Big Data August 18th, 2015

Nanoelectronics

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

'Quantum dot' technology may help light the future August 19th, 2015

Surprising discoveries about 2-D molybdenum disulfide: Berkeley Lab researchers use award-winning campanile probe on promising semiconductor August 15th, 2015

Better together: Graphene-nanotube hybrid switches August 3rd, 2015

Announcements

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Tools

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Nanometrics to Participate in the Citi 2015 Global Technology Conference August 26th, 2015

50 Years of Scanning Electron Microscopy from ZEISS: ZEISS celebrates the birth of the first commercial scanning electron microscope in 1965 August 26th, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic