Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > DoE grants fund work on new hydrogen fuel technologies at UCSC

Abstract:
Hydrogen from water using solar energy is the focus of one of the projects

Department of Energy grants fund work on new hydrogen fuel technologies at UCSC

Washington, DC | June 28, 2005

Nanotechnology may hold the key to developing a viable hydrogen economy, according to Jin Zhang, professor of chemistry and biochemistry at the University of California, Santa Cruz. Zhang will receive $535,000 in grants from the U.S. Department of Energy (DOE) for his part in two research projects aimed at developing new technologies for the production and storage of hydrogen fuel using nanostructured materials.

Producing hydrogen from water using solar energy is the focus of one of the projects. Zhang is leading that effort and is also a coinvestigator on a second project to develop a method for highly efficient hydrogen storage. Both of the three-year projects rely on a novel approach to create nanostructured materials with special properties. Nanostructure refers to dimensions on the scale of billionths of a meter.

"The goal is to produce clean energy," Zhang said. "The idea of using solar energy and water as a source of hydrogen is very attractive, and we believe nanostructured materials can be used to do this efficiently."

The grants are among 70 hydrogen research projects funded through a $64 million DOE initiative aimed at making vehicles powered by hydrogen fuel cells available, practical, and affordable for American consumers by 2020. Zhang's collaborators on the hydrogen production project are Yiping Zhao of the University of Georgia at Athens and Wei Chen of Nomadics Inc. The hydrogen storage project is headed by Zhao and also involves Matthew McCluskey of Washington State University.

Hydrogen offers an attractive alternative to fossil fuels because it is highly efficient and clean. But major technological hurdles must be overcome to make the use of hydrogen fuel practical.

The first hurdle is how to produce the hydrogen. Water molecules can be split to form pure hydrogen and oxygen using electricity (a process called electrolysis). But the environmental advantages of hydrogen would be lost if the electricity used to generate it came from burning fossil fuels. Using solar energy to split water and generate hydrogen is not a new concept, but Zhang says his team's approach could lead to a device efficient enough for practical use.

"We want to build a device that you can put in the sun, fill it with water, and get hydrogen without using any outside source of energy," Zhang said.

The device will integrate two kinds of solar cells--a photovoltaic cell to produce electricity and a photoelectrochemical cell to produce hydrogen from the electrolysis of water. Both will use specially designed materials based on arrays of nanowires with uniform orientation. The main focus of the project will be on developing these nanostructured materials to optimize the efficiency of both the photovoltaic cell and the photoelectrochemical cell.

The researchers will use a technique called glancing angle deposition (GLAD) to fabricate the nanowire arrays. Zhao is one of the pioneers in the development of this technique for making nanowires and nanorods. Zhang's lab will focus on characterizing the structure and properties of the materials Zhao makes and evaluating their suitability for achieving the highest possible efficiencies for the photovoltaic cell and the photoelectrochemical cell.

The hydrogen storage project will also involve using the GLAD technique to fabricate nanostructured materials. One of the problems with hydrogen as a fuel is that it is a bulky gas that is not easily transported and stored. A promising solution is to store it in a solid form as a metal hydride compound. Metal hydride nanostructures could greatly improve the efficiency of this type of storage, Zhang said.

"Nanostructures have a much larger surface area than bulk materials, so they could hold more hydrogen per unit weight," he said.

The researchers plan to find the optimum conditions for fabricating metal hydride nanostructures to achieve highly efficient hydrogen storage.

"The key to our success in each of these projects is the material. We need to understand the properties of these materials and then explore their applications in devices," Zhang said.

####


Note to reporters: You may contact Zhang at (831) 459-3776 or zhang@chemistry.ucsc.edu.

Contact:
Tim Stephens
(831) 459-2495
stephens@ucsc.edu

Copyright © University of California, Santa Cruz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Investments/IPO's/Splits

Harris & Harris Group Letter to Shareholders on Website August 19th, 2014

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 August 12th, 2014

Aspen Aerogels, Inc. to Present at Canaccord Genuity 34th Annual Growth Conference August 11th, 2014

Harris & Harris Group Reports Financial Statements as of June 30, 2014 August 10th, 2014

Materials/Metamaterials

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Nano Bonds Increase Raw Strength of Fireproof Concretes August 18th, 2014

Announcements

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Environment

Production of Toxic Ion Nanosorbents with High Sorption Capacity in Iran August 17th, 2014

PerkinElmer to Display Innovative Detection and Informatics Offerings at ACS National Meeting & Exposition Detection, Data Visualization and Analytics for Chemistry Professionals August 8th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Iranian Scientists Use Waste Cotton Fibers to Produce Cellulose Nanoparticles July 29th, 2014

Energy

Chemical reaction yields "tapes" of porphin molecules: Flexible tapes from the nanoworld August 13th, 2014

Eco-friendly 'pre-fab nanoparticles' could revolutionize nano manufacturing: UMass Amherst team invents a way to create versatile, water-soluble nano-modules August 13th, 2014

“Active” surfaces control what’s on them: Researchers develop treated surfaces that can actively control how fluids or particles move August 6th, 2014

Used-cigarette butts offer energy storage solution August 5th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE