Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > DoE grants fund work on new hydrogen fuel technologies at UCSC

Abstract:
Hydrogen from water using solar energy is the focus of one of the projects

Department of Energy grants fund work on new hydrogen fuel technologies at UCSC

Washington, DC | June 28, 2005

Nanotechnology may hold the key to developing a viable hydrogen economy, according to Jin Zhang, professor of chemistry and biochemistry at the University of California, Santa Cruz. Zhang will receive $535,000 in grants from the U.S. Department of Energy (DOE) for his part in two research projects aimed at developing new technologies for the production and storage of hydrogen fuel using nanostructured materials.

Producing hydrogen from water using solar energy is the focus of one of the projects. Zhang is leading that effort and is also a coinvestigator on a second project to develop a method for highly efficient hydrogen storage. Both of the three-year projects rely on a novel approach to create nanostructured materials with special properties. Nanostructure refers to dimensions on the scale of billionths of a meter.

"The goal is to produce clean energy," Zhang said. "The idea of using solar energy and water as a source of hydrogen is very attractive, and we believe nanostructured materials can be used to do this efficiently."

The grants are among 70 hydrogen research projects funded through a $64 million DOE initiative aimed at making vehicles powered by hydrogen fuel cells available, practical, and affordable for American consumers by 2020. Zhang's collaborators on the hydrogen production project are Yiping Zhao of the University of Georgia at Athens and Wei Chen of Nomadics Inc. The hydrogen storage project is headed by Zhao and also involves Matthew McCluskey of Washington State University.

Hydrogen offers an attractive alternative to fossil fuels because it is highly efficient and clean. But major technological hurdles must be overcome to make the use of hydrogen fuel practical.

The first hurdle is how to produce the hydrogen. Water molecules can be split to form pure hydrogen and oxygen using electricity (a process called electrolysis). But the environmental advantages of hydrogen would be lost if the electricity used to generate it came from burning fossil fuels. Using solar energy to split water and generate hydrogen is not a new concept, but Zhang says his team's approach could lead to a device efficient enough for practical use.

"We want to build a device that you can put in the sun, fill it with water, and get hydrogen without using any outside source of energy," Zhang said.

The device will integrate two kinds of solar cells--a photovoltaic cell to produce electricity and a photoelectrochemical cell to produce hydrogen from the electrolysis of water. Both will use specially designed materials based on arrays of nanowires with uniform orientation. The main focus of the project will be on developing these nanostructured materials to optimize the efficiency of both the photovoltaic cell and the photoelectrochemical cell.

The researchers will use a technique called glancing angle deposition (GLAD) to fabricate the nanowire arrays. Zhao is one of the pioneers in the development of this technique for making nanowires and nanorods. Zhang's lab will focus on characterizing the structure and properties of the materials Zhao makes and evaluating their suitability for achieving the highest possible efficiencies for the photovoltaic cell and the photoelectrochemical cell.

The hydrogen storage project will also involve using the GLAD technique to fabricate nanostructured materials. One of the problems with hydrogen as a fuel is that it is a bulky gas that is not easily transported and stored. A promising solution is to store it in a solid form as a metal hydride compound. Metal hydride nanostructures could greatly improve the efficiency of this type of storage, Zhang said.

"Nanostructures have a much larger surface area than bulk materials, so they could hold more hydrogen per unit weight," he said.

The researchers plan to find the optimum conditions for fabricating metal hydride nanostructures to achieve highly efficient hydrogen storage.

"The key to our success in each of these projects is the material. We need to understand the properties of these materials and then explore their applications in devices," Zhang said.

####


Note to reporters: You may contact Zhang at (831) 459-3776 or zhang@chemistry.ucsc.edu.

Contact:
Tim Stephens
(831) 459-2495
stephens@ucsc.edu

Copyright © University of California, Santa Cruz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Investments/IPO's/Splits

Harris & Harris Group Portfolio Company, AgBiome, Announces Partnership to Accelerate the Discovery of Next Generation Insect-Resistant Crops July 1st, 2015

Nanometrics to Participate in 7th Annual CEO Investor Summit 2015: Investor Event Held Concurrently With SEMICON West in San Francisco June 25th, 2015

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Nanowire LED Innovator Aledia Completes $31 Million Series B Financing June 18th, 2015

Materials/Metamaterials

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Proposed TSCA Nanomaterial Rule ‘Premature’, Says Former EPA Toxicologist July 1st, 2015

Announcements

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Environment

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

NNI Publishes Workshop Report and Launches Web Portal on Nanosensors: Both outputs support the Nanotechnology Signature Initiative ‘Nanotechnology for Sensors and Sensors for Nanotechnology: Improving and Protecting Health, Safety, and the Environment’ June 24th, 2015

Energy

New technology using silver may hold key to electronics advances July 2nd, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project