Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > DoE grants fund work on new hydrogen fuel technologies at UCSC

Abstract:
Hydrogen from water using solar energy is the focus of one of the projects

Department of Energy grants fund work on new hydrogen fuel technologies at UCSC

Washington, DC | June 28, 2005

Nanotechnology may hold the key to developing a viable hydrogen economy, according to Jin Zhang, professor of chemistry and biochemistry at the University of California, Santa Cruz. Zhang will receive $535,000 in grants from the U.S. Department of Energy (DOE) for his part in two research projects aimed at developing new technologies for the production and storage of hydrogen fuel using nanostructured materials.

Producing hydrogen from water using solar energy is the focus of one of the projects. Zhang is leading that effort and is also a coinvestigator on a second project to develop a method for highly efficient hydrogen storage. Both of the three-year projects rely on a novel approach to create nanostructured materials with special properties. Nanostructure refers to dimensions on the scale of billionths of a meter.

"The goal is to produce clean energy," Zhang said. "The idea of using solar energy and water as a source of hydrogen is very attractive, and we believe nanostructured materials can be used to do this efficiently."

The grants are among 70 hydrogen research projects funded through a $64 million DOE initiative aimed at making vehicles powered by hydrogen fuel cells available, practical, and affordable for American consumers by 2020. Zhang's collaborators on the hydrogen production project are Yiping Zhao of the University of Georgia at Athens and Wei Chen of Nomadics Inc. The hydrogen storage project is headed by Zhao and also involves Matthew McCluskey of Washington State University.

Hydrogen offers an attractive alternative to fossil fuels because it is highly efficient and clean. But major technological hurdles must be overcome to make the use of hydrogen fuel practical.

The first hurdle is how to produce the hydrogen. Water molecules can be split to form pure hydrogen and oxygen using electricity (a process called electrolysis). But the environmental advantages of hydrogen would be lost if the electricity used to generate it came from burning fossil fuels. Using solar energy to split water and generate hydrogen is not a new concept, but Zhang says his team's approach could lead to a device efficient enough for practical use.

"We want to build a device that you can put in the sun, fill it with water, and get hydrogen without using any outside source of energy," Zhang said.

The device will integrate two kinds of solar cells--a photovoltaic cell to produce electricity and a photoelectrochemical cell to produce hydrogen from the electrolysis of water. Both will use specially designed materials based on arrays of nanowires with uniform orientation. The main focus of the project will be on developing these nanostructured materials to optimize the efficiency of both the photovoltaic cell and the photoelectrochemical cell.

The researchers will use a technique called glancing angle deposition (GLAD) to fabricate the nanowire arrays. Zhao is one of the pioneers in the development of this technique for making nanowires and nanorods. Zhang's lab will focus on characterizing the structure and properties of the materials Zhao makes and evaluating their suitability for achieving the highest possible efficiencies for the photovoltaic cell and the photoelectrochemical cell.

The hydrogen storage project will also involve using the GLAD technique to fabricate nanostructured materials. One of the problems with hydrogen as a fuel is that it is a bulky gas that is not easily transported and stored. A promising solution is to store it in a solid form as a metal hydride compound. Metal hydride nanostructures could greatly improve the efficiency of this type of storage, Zhang said.

"Nanostructures have a much larger surface area than bulk materials, so they could hold more hydrogen per unit weight," he said.

The researchers plan to find the optimum conditions for fabricating metal hydride nanostructures to achieve highly efficient hydrogen storage.

"The key to our success in each of these projects is the material. We need to understand the properties of these materials and then explore their applications in devices," Zhang said.

####


Note to reporters: You may contact Zhang at (831) 459-3776 or zhang@chemistry.ucsc.edu.

Contact:
Tim Stephens
(831) 459-2495
stephens@ucsc.edu

Copyright University of California, Santa Cruz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Investments/IPO's/Splits

180 Degree Capital Corp. to Provide Live Remote Access to Its Annual Meeting of Shareholders on June 12, 2018 June 12th, 2018

Nanometrics Updates Time of Webcast at Stifel 2018 Cross Sector Insight Conference June 12th, 2018

Arrowhead Pharmaceuticals to Present at Upcoming June 2018 Conferences May 31st, 2018

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) March 20th, 2018

Materials/Metamaterials

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Nickel ferrite promotes capacity and cycle stability of lithium-sulfur battery June 13th, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Announcements

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Environment

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

A nanotech sensor that turns molecular fingerprints into bar codes June 7th, 2018

Engineered polymer membranes could be new option for water treatment May 6th, 2018

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

Energy

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project