Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > DoE grants fund work on new hydrogen fuel technologies at UCSC

Abstract:
Hydrogen from water using solar energy is the focus of one of the projects

Department of Energy grants fund work on new hydrogen fuel technologies at UCSC

Washington, DC | June 28, 2005

Nanotechnology may hold the key to developing a viable hydrogen economy, according to Jin Zhang, professor of chemistry and biochemistry at the University of California, Santa Cruz. Zhang will receive $535,000 in grants from the U.S. Department of Energy (DOE) for his part in two research projects aimed at developing new technologies for the production and storage of hydrogen fuel using nanostructured materials.

Producing hydrogen from water using solar energy is the focus of one of the projects. Zhang is leading that effort and is also a coinvestigator on a second project to develop a method for highly efficient hydrogen storage. Both of the three-year projects rely on a novel approach to create nanostructured materials with special properties. Nanostructure refers to dimensions on the scale of billionths of a meter.

"The goal is to produce clean energy," Zhang said. "The idea of using solar energy and water as a source of hydrogen is very attractive, and we believe nanostructured materials can be used to do this efficiently."

The grants are among 70 hydrogen research projects funded through a $64 million DOE initiative aimed at making vehicles powered by hydrogen fuel cells available, practical, and affordable for American consumers by 2020. Zhang's collaborators on the hydrogen production project are Yiping Zhao of the University of Georgia at Athens and Wei Chen of Nomadics Inc. The hydrogen storage project is headed by Zhao and also involves Matthew McCluskey of Washington State University.

Hydrogen offers an attractive alternative to fossil fuels because it is highly efficient and clean. But major technological hurdles must be overcome to make the use of hydrogen fuel practical.

The first hurdle is how to produce the hydrogen. Water molecules can be split to form pure hydrogen and oxygen using electricity (a process called electrolysis). But the environmental advantages of hydrogen would be lost if the electricity used to generate it came from burning fossil fuels. Using solar energy to split water and generate hydrogen is not a new concept, but Zhang says his team's approach could lead to a device efficient enough for practical use.

"We want to build a device that you can put in the sun, fill it with water, and get hydrogen without using any outside source of energy," Zhang said.

The device will integrate two kinds of solar cells--a photovoltaic cell to produce electricity and a photoelectrochemical cell to produce hydrogen from the electrolysis of water. Both will use specially designed materials based on arrays of nanowires with uniform orientation. The main focus of the project will be on developing these nanostructured materials to optimize the efficiency of both the photovoltaic cell and the photoelectrochemical cell.

The researchers will use a technique called glancing angle deposition (GLAD) to fabricate the nanowire arrays. Zhao is one of the pioneers in the development of this technique for making nanowires and nanorods. Zhang's lab will focus on characterizing the structure and properties of the materials Zhao makes and evaluating their suitability for achieving the highest possible efficiencies for the photovoltaic cell and the photoelectrochemical cell.

The hydrogen storage project will also involve using the GLAD technique to fabricate nanostructured materials. One of the problems with hydrogen as a fuel is that it is a bulky gas that is not easily transported and stored. A promising solution is to store it in a solid form as a metal hydride compound. Metal hydride nanostructures could greatly improve the efficiency of this type of storage, Zhang said.

"Nanostructures have a much larger surface area than bulk materials, so they could hold more hydrogen per unit weight," he said.

The researchers plan to find the optimum conditions for fabricating metal hydride nanostructures to achieve highly efficient hydrogen storage.

"The key to our success in each of these projects is the material. We need to understand the properties of these materials and then explore their applications in devices," Zhang said.

####


Note to reporters: You may contact Zhang at (831) 459-3776 or zhang@chemistry.ucsc.edu.

Contact:
Tim Stephens
(831) 459-2495
stephens@ucsc.edu

Copyright University of California, Santa Cruz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Investments/IPO's/Splits

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

180 Degree Capital Corp. Leads Investment in TheStreet, Inc.; Investment Enables Removal of Capital Structure Overhang November 14th, 2017

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) October 23rd, 2017

Arrowhead Hosts Investor & Analyst R&D Day to Introduce TRiM(TM) Platform and Lead RNAi-based Drug Candidates September 14th, 2017

Materials/Metamaterials

Creating a new kind of metallic glass December 7th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Chinese market opens up for Carbodeon nanodiamonds: Carbodeon granted Chinese Patent for Nanodiamond-containing Thermoplastic Thermal Compounds December 4th, 2017

Scientists make transparent materials absorb light December 1st, 2017

Announcements

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Environment

Silicon Sense first to achieve EPA approval to import detonation nanodiamonds to US: Nanodiamond additives can significantly improve the performance of metal finishing, polymer thermal and mechanical compounds, polymer coatings, CMP polishing and a range of other applications November 29th, 2017

Report highlights opportunities and risks associated with synthetic biology and bioengineering November 22nd, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

Nano-sized gold particles have been shaped to behave as clones in biomedicine November 3rd, 2017

Energy

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project