Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New book highlights status of research into carbon nanotubes

Abstract:
Applied Physics of Carbon Nanotubes: Fundamentals of Theory, Optics and Transport Devices is aimed at scientists, engineers and investors

New book highlights status of research into carbon nanotubes

June 24, 2005

Since their discovery 14 years ago, carbon nanotubes have captured the imagination of scientists and lay people alike. The science of nanotubes almost seems more science fiction than science. These structures, so minuscule they cannot be seen, are stronger than diamonds. They are formed from organic material but act as metals or semi-conductors. As such, nanotubes offer great potential in electronics, lasers and medicine.

To highlight the status of research on nanotubes, Slava V. Rotkin and Shekhar Subramoney have edited a new book, "Applied Physics of Carbon Nanotubes: Fundamentals of Theory, Optics and Transport Devices," which was just released by Springer. The book's 12 chapters are written by top researchers in the field.

Rotkin is an assistant professor of physics and a faculty member with Lehigh's Center for Advanced Materials and Nanotechnology. Subramoney, a researcher with Dupont Central Research and Development Laboratories, is co-chair of the nanotube section of the Fullerenes, Nanotubes and Carbon Nanostructures Division of the Electrochemical Society Inc.

The book offers basic information about the properties and characterization of nanotubes as well as information about new research tools, like nanotube optical spectroscopy, some of which are only 18 months old. With its emphasis on applications, the book is intended for scientists, engineers and investors.

Nanotubes are sheets of carbon atoms connected in a honeycomb-like pattern that are rolled into tiny cylinders one nanometer in diameter. One nanometer is one one-billionth of a meter, or one 10,000th the thickness of a human hair. The properties of the tube depend on how the cylinder is rolled, just as the properties of chemical elements depend on their weight.

Rotkin and Subramoney's book covers four main areas of nanotube research: theories and modeling, synthesis and characterization, optical spectroscopy, and transport and electromechanical applications.

The first section, on the theories and modeling of nanotubes, includes a chapter by Rotkin titled "From Quantum Models to Novel Effects to New Applications: Theory of Nanotube Devices." Rotkin's research has focused on designing a novel type of electronic switch called a metallic field-effect transistor. He reported a breakthrough in this area in an article in Applied Physics Letters last year.

In the second section, readers learn about nanotube properties, which vary widely, and about how nanotubes are made, identified and classified. Given the right chemical conditions, nanotubes grow on their own. So far, the longest nanotubes created have been measured in centimeters.

The third section describes new work on the use of optical spectroscopy to study nanotechnology. This revolutionary new method, Rotkin says, uses light to identify the properties of a nanotube. The progress in nanotube synthesis, their separation and research in optical spectroscopy will result in developing "robust tools to bring nanotubes to the tables of engineers," he says.

Optical spectroscopy allows researchers to study how nanotubes "breathe," or vibrate, by regularly expanding and contracting. Like fingerprints, each nanotube has a unique pulse. The pulsing nanotubes reflect light waves like a car reflects the sound waves from a police radar gun. As the radar gun measures a car's speed by the frequency of the sound waves it reflects, scientists determine the pulse of nanotubes by measuring the frequency of the light waves they give off. From the pulse they can then identify a nanotube's properties even if it is invisible.

The final section of the book discusses electronic applications of nanotubes. Although uses of nanotubes are only just beginning to explored, the field holds great promise. Already, Samsung electronics and Motorola are using nanotubes in flat panel display screens. Nanotube field emitters are "better, cheaper and longer lasting" than the metal tip emitters used before, Rotkin says.

"Electronic applications of nanotubes in their childhood," Rotkin says, "are much, much better than silicon devices were in their childhood."

Nanotubes, which emit light, may also be used for lasers and other optoelectronic devices. Scientists believe the nanotubes could increase the range of laser power, making them useful for detecting chemical and biological weapons.

Another chapter discusses the mechanical properties and future uses of nanotubes. Some scientists believe that nanotubes could be used for a space elevator. Nanotubes are the only material strong enough to support an elevator extending miles into space from the earth's surface. If scientists can make a nanotube long enough, then the elevator would be possible.

Nanotubes could also be used to treat sickle-cell anemia and other diseases resulting from malfunctioning ion channels. Since all living organisms are constructed from carbon, the nanotubes would not be rejected by the body.

The book contains a chapter on DNA and nanotube interactions that was written by Anand Jagota, professor of chemical engineering and director of Lehigh's bioengineering and life sciences program. When nanotubes are created, they form a dense clump, like a box of uncooked spaghetti noodles, Rotkin says. To separate nanotubes, researchers originally added soap, which peeled nanotubes apart. Then strong acceleration caused the heavier nanotubes to fall and the smaller ones to float.

The process worked but not without drawbacks. The soap chemically changes nanotubes. Jagota and other researchers are looking for other ways to separate nanotubes. By wrapping DNA and proteins around the nanotubes, Jagota achieved the same result as soap without the chemical difficulties.

Jagota's work in this area complements Rotkin's current investigations into the theoretical aspects of DNA-nanotube interactions.

####
Contact:
Kurt Pfitzer
kap4@lehigh.edu
610-758-3017

Copyright © Lehigh University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project