Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > CBEN: Buckyball Aggregates are Soluble, Antibacterial

Abstract:
Research Offers Clues About C60 Behavior in Natural Environments

CBEN: Buckyball Aggregates are Soluble, Antibacterial

Center for Biological and Environmental Nanotechnology (CBEN)

Houston, TX | June 22, 2005

In some of the first research to probe how buckyballs will interact with natural ecosystems, Rice University's Center for Biological and Environmental Nanotechnology finds that the molecules spontaneously clump together upon contact with water, forming nanoparticles that are both soluble and toxic to bacteria.

The research challenges conventional wisdom: since buckyballs are notoriously insoluble by themselves, most scientists had assumed they would remain insoluble in nature. The findings also raise questions about how the buckyball aggregates -­ dubbed nano-C60 -­ will interact with other particles and living things in natural ecosystems.

The findings appear in the June 1 issue of the journal Environmental Science & Technology.

"The fact that nano-C60 dissolves in water raises questions about water as a vector for the movement of these types of materials," said Vicki Colvin, CBEN director, professor of chemistry and a co-author on the study.

Buckyballs are soccer ball-shaped molecules of 60 carbon atoms that were discovered at Rice in 1985. While a few companies are already using trace amounts of buckyballs in products, large-scale production of buckyballs is still a year or two away. Ultimately, companies hope to use buckyballs in everything from pharmaceuticals to sporting goods.

The research team was led by Georgia Tech environmental engineer Joseph Hughes and included almost a dozen Rice collaborators. They found that nano-C60 readily dissolves in water. The clumps, which measured between 25 and 500 nanometers in diameter, were also found to persist for up to 15 weeks in freshwater.

The researchers also exposed nano-C60 to two common types of soil bacteria. They found the particles inhibited both the growth and respiration of the bacteria at very low concentrations - as little as 0.5 parts per million.

"The antibacterial properties of the C60 aggregates also raise some interesting questions," said Colvin. "We think it may be possible to harness those properties for good applications, but we also advocate continued research on the potentially negative effects that these materials could have on the health of natural ecosystems."

Hughes, the study's lead author, said scientists don't yet know enough to accurately predict what impact buckyballs will have on the environment or in living systems, but he said the findings do illustrate the shortcomings of federal guidelines for the handling and disposal of buckyballs, which are subject to the same regulations as bulk carbon black.

"Not all carbon is the same," said Hughes. "Graphite and diamonds are both bulk carbon, for example, but current standards call for handling them in completely different ways. Our results suggest buckyballs also should be handled differently."

Other Rice collaborators include CBEN Executive Director Kevin Ausman; Jane Tao, assistant professor of biochemistry and cell biology; Wenhua Guo, research scientist; Lawrence Alemany, senior research scientist; and graduate students J.D. Fortner, D. Y. Lyon, C.M. Sayes, A.M. Boyd, J.C. Falkner and E.M. Hotze.

####


About Rice University:
Rice University is consistently ranked one of America's best teaching and research universities. It is distinguished by its: size - 2,850 undergraduates and 1,950 graduate students; selectivity -10 applicants for each place in the freshman class; resources‹an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice's wooded campus is located in the nation's fourth largest city and on America's South Coast.

For additional information, visit www.rice.edu

Contact:
Jade Boyd
(713) 348-6778
jadeboyd@rice.edu

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Preparing for Nano

Durnham University's DEEPEN project comes to a close September 26th, 2012

Technical Seminar at ANFoS 2012 August 22nd, 2012

Nanotechnology shows we can innovate without economic growth April 12th, 2012

Thailand to host NanoThailand 2012 December 18th, 2011

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Announcements

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Nanosorbents Increase Extraction, Recycling of Silver from Aqueous Solutions March 4th, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Environment

Nanosorbents Increase Extraction, Recycling of Silver from Aqueous Solutions March 4th, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Heightened Efficiency in Purification of Wastewater Using Nanomembranes March 3rd, 2015

Colon + septic tank = unique, at times stinky, study: Researchers use lab-scale human colon and septic tank to study impact of copper nanoparticles on the environment March 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE