Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Scientists put the squeeze on electron spins

Abstract:
By squeezing the crystal in a controlled manner, and without applying magnetic fields, the researchers were able to watch the electron spins rotate (or precess) as they flow through the crystal.

Scientists put the squeeze on electron spins

Los Alamos, N.M. | June 16, 2005

University of California scientists working at Los Alamos National Laboratory have developed a novel method for controlling and measuring electron spins in semiconductor crystals of GaAs (gallium arsenide). The work suggests an alternative -- and perhaps even superior -- method of spin manipulation for future generations of "semiconductor spintronic" devices.

In research published in today's issue of the scientific journal Physical Review Letters, Scott Crooker and Darryl Smith describe their use of a scanning optical microscope to acquire two-dimensional images of spin-polarized electrons flowing in semiconductor crystals mounted on an optical cryostat while using a miniature "cryogenic vise" to apply gentle pressure. By squeezing the crystal in a controlled manner, and without applying magnetic fields, the researchers were able to watch the electron spins rotate (or precess) as they flow through the crystal.

According to Crooker, "electrons, in addition to their negative electronic charge, also possess a magnetic "spin". That is, each electron behaves like a little bar magnet, with north and south poles. Electron spins in semiconductors are typically manipulated by applying a magnetic field, but we've found we can do the same thing, in a controlled fashion, using the "vise". And, the resulting degree of spatial spin coherence is remarkably more robust compared to the spin precession induced by a magnetic field."

The cryogenic vise operates at only a few degrees above absolute zero (4 degrees Kelvin) and can be used to intentionally tip, rotate, and flip the electron spins. The research was conducted at the Pulsed Field Facility of the National High Magnetic Field Laboratory (NHMFL) at Los Alamos.

The research was funded by Los Alamos Laboratory-Directed Research and Development (LDRD) funding and the Defense Advanced Research Project Agency's SPins IN Semiconductors (SPINS) Program, which is designed to encourage research to exploit the spin degree of freedom of the electron and create revolutionary electronic devices with the potential to be very fast at very low power.

Alex H. Lacerda, Director of NHMFL-Los Alamos, states, "This work is an excellent example of how the LDRD program engenders strong inter-divisional relationships and enduring experimental-theoretical collaborations at Los Alamos for the pursuit of basic science."

The research fits into a broader area of expertise that Los Alamos National Laboratory maintains in the field of atomic physics in general, and spintronics research in particular.

####

About Los Alamos National Laboratory:
Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration of the U.S. Department of Energy and works in partnership with NNSA's Sandia and Lawrence Livermore national laboratories to support NNSA in its mission. Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear deterrent, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to defense, energy, environment, infrastructure, health and national security concerns.

Contact:
Todd Hanson
tahanson@lanl.gov
(505) 665-2085 (04-147)

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Spintronics

University of Illinois study advances limits for ultrafast nano-devices July 10th, 2014

Harnessing magnetic vortices for making nanoscale antennas: Scientists explore ways to synchronize spins for more powerful nanoscale electronic devices April 30th, 2014

Could Diamonds Be A Computerís Best Friend? Landmark experiment reveals the precious gemís potential in computing March 24th, 2014

Spintronic Thermoelectric Power Generators: A step towards energy efficient electronic devices March 21st, 2014

Announcements

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE