Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NanoHorizons™ Patents Breakthrough

Abstract:
Inexpensive photovoltaics made possible; available via new technology licensing program

NanoHorizons™ Patents Cost and Efficiency Breakthrough for Solar Cells and Organic LEDs

State College, PA | June 07, 2005

NanoHorizons, Inc., an emerging leader in applied nanoscale materials and solutions, announced today that it has received a notice of allowance from the US Patent Office for its innovative nanoscale photovoltaic cell design. NanoHorizons’ design enables dramatic improvements in solar cell efficiency and breakthrough reductions in fabrication costs. Brighter, more efficient Organic LEDs (OLEDs) are also made possible. The new technology will be available via NanoHorizons’ new Technology Licensing Program.

Breaking the Barrier to Cheap AND Efficient Solar Energy: “Layered Design” is the problem
Solar-generated electrical power using today’s best photovoltaics costs 4-10 times more than conventional power generation because today’s solar cells are far too expensive to deploy widely and are only about 15% efficient.

In conventional photovoltaic cell designs, photons enter an absorption layer producing energized electrons. These electrons travel across a portion of the absorption layer to a collection layer where electrical energy is captured. Both the absorption of photons producing energized electrons and the collection of that energy occur along one line of travel, perpendicular to the layers of the cell.

“Layered designs face an inherent paradox,” explains co-inventor Dr. Ali Kaan Kalkan, “Thicker light-absorbing layers are needed to capture sufficient light energy, but their thickness makes it difficult for electrons to reach collection layers. Thinner layers reduce loss, but thin layers absorb too little light. What’s been needed is a new approach that allows the light absorption path to be optimally long, while simultaneously moving efficient collection much closer to the source of energized electrons.”

NanoHorizons’ innovation: A 90-degree turn and applied nanotechnology
NanoHorizons’ design utilizes a single nanoscale-engineered structure to perform both absorption and collection: An array of efficient vertically-aligned collector “nano-spikes” (made of nanofibers, nanowires, nanotubes, or nanoparticle chains) rise throughout a layer of light-absorptive material. By integrating vertical nano-spike collectors into the absorption material itself, energy collection now occurs at 90 degrees to the absorption process. Click here to see an illustration of how this this technology works.

This breakthrough enables photovoltaics builders to use an optimally thick absorption layer while dramatically shortening collection distance by as much as 1000-fold (tens of nanometers vs. tens of microns in today’s best two-layer cells) – eliminating the impact of absorption layer thickness on collection distance.

Brighter future for photovoltaics and organic LEDs
“Solar energy development has been held up by barriers inherent in cell design. These barriers have now been broken,” said Stephen Fonash, PhD., founder of NanoHorizons and co-inventor of the newly patented technology. “Our nanoscale approach can enable collection lengths as small as a few tens of nanometers, opening the door to the use of inexpensive materials and fabrication processes, while simultaneously enabling a truly optimized absorption length. This technology is poised to greatly stimulate growth in the solar energy and Organic LED sectors.”

New photovoltaic devices utilizing NanoHorizons’ technology can be manufactured with lower-quality materials on high-throughput production lines that use rollers and coating/spraying machines.

Technology Licensing Program launched
Nanohorizons also announced its Technology Licensing Program, which will include the breakthrough photovoltaic invention. The Program will enable interested companies to utilize selected elements of NanoHorizons’ extensive intellectual property portfolio with a range of royalty arrangements.

“Our fundamental strategy is to invest in product development for only a few components of our broad intellectual property portfolio, and offer attractive technology licensing arrangements for other parts of the portfolio,” said Robert Burlinson, Nanohorizons’ CEO. “We believe that many prominent firms in the photovoltaic and OLED fields will find great interest in licensing this invention.”

####

About NanoHorizons Inc.:
Founded in 1998, NanoHorizons focuses on nanotechnology applications in the drug discovery, microelectronics, consumer products and health care industries and has licensed a comprehensive portfolio of nanotechnology intellectual property from the Penn State Research Foundation. Its research and development team continuously produces additional real-life solutions using nanotechnology in applied materials science.

NanoHorizons’s new product and application introductions include: noble metal nanoparticles; QuickMass™ for mass spectrometry, which addresses the need for more cost effective compound screening in pharmaceutical research and increased drug discovery capacity; and nano-material based humidity sensors in applications such as environmental control, respiration monitors and medical diagnostics.

For more information, please visit www.nanohorizons.com

Contact:
Nicolas A. Boillot
Hart-Boillot, LLC
781-893-0053
nboillot@hartboillot.com

Dennis I. Schneider
NanoHorizons, Inc.
(814) 689-1578
dschneider@nanohorizons.com

Copyright © NanoHorizons

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Announcements

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Patents/IP/Tech Transfer/Licensing

Chinese market opens up for Carbodeon nanodiamonds: Carbodeon granted Chinese Patent for Nanodiamond-containing Thermoplastic Thermal Compounds December 4th, 2017

Picosun’s ALD nanolaminates improve lifetime and reliability of electronic circuit boards October 24th, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Nanoparticles limit damage in spinal cord injury: Injection after an injury reduces inflammation and scarring September 6th, 2017

Energy

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project