Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Path to Manufacturing Complex Nano-electronic Devices

Abstract:
Control over materials important in the production of nanoelectronics

New Technique Provides Path to Manufacturing Complex Nano-electronic Devices

Madison, WI | June 02, 2005

In the time it takes to read this sentence, your fingernail will have grown one nanometer. That's one-billionth of a meter and it represents the scale at which electronics must be built if the march toward miniaturization is to continue.

Reporting in the June 3 issue of the Journal Science, an international team of researchers shows how control over materials on this tiny scale can be extended to create complex patterns important in the production of nanoelectronics.

About two years ago, a team led by University of Wisconsin-Madison Chemical and Biological Engineering Professor Paul Nealey demonstrated a lithographic technique for creating patterns in the chemistry of polymeric materials used as templates for nanomanufacturing. They deposited a film of block copolymers on a chemically patterned surface such that the molecules arranged themselves to replicate the underlying pattern without imperfections.

UWM - arrays of bent lines at the nanoscale
The directed self-assembly process can produce large, virtually perfect arrays of bent lines at the nanoscale. Such arrays could form the basis of nanoscale electronic devices.
Credit: Mark Stoykovich and Paul Nealey. Click to enlarge.

That technique works well for creating templates that are neatly ordered in periodic arrays, explains Nealey, who directs the NSF-funded Nanoscale Science and Engineering Center. "But one of the challenges of nanofabrication is integrating these self-assembling materials, that naturally form periodic structures, into existing manufacturing strategies."

Adds Nealey: "Engineers create microelectronics under free-form design principles. Not everything fits neatly into an array. This new technique directs the assembly of blends of block copolymers and homopolymers on chemically nano-patterned substrates. The result is the creation of structures with non-regular geometries. We've now potentially harnessed the fine control over structure dimensions, afforded by self-assembling materials, to allow for the production of complex nanoelectronic devices."

That kind of control is critical if computer architects are to continue advancing by Moore's Law. In 1965, Gordon Moore noted the exponential growth in the number of transistors per integrated circuit and predicted the trend would continue. It has. About every 18 months, the number of transistors in computer chips doubles. By decreasing the size of these components and, consequently, fitting more of them onto a single chip, computer speed and power improves. But before long, existing technology will run out of room.

UWM - block copolymer
Left to its own devices, the "block copolymer" mix used by the University of Wisconsin group will congeal into a disordered pattern resembling a fingerprint (left). But the directed assembly process can transform that pattern into highly ordered stripes or bends (right). These well-aligned geometries are commonly used in the nanofabrication of integrated circuits and microelectronic devices.
Credit: Mark Stoykovich and Paul Nealey. Click to enlarge.

Current manufacturing processes employing chemically amplified lithography techniques achieve dimensions as small as 50 to 70 nanometers, but that technology might not be extendable as feature dimensions shrink below 30 nanometers.

By merging the latest principles of lithography and self-assembly block-copolymer techniques, researchers at UW-Madison and the Paul Scherrer Institute in Switzerland developed a hybrid approach that maximizes the benefits and minimizes the limitations of each approach to nanomanufacturing.

"These new self-assembly materials used in conjunction with the most advanced exposure tools may enable the extension of current manufacturing practices to dimensions of 10 nanometers or less," says chemical and biological engineering graduate student and co-author Mark Stoykovich.

The team includes Nealey, Stoykovich, graduate student Erik Edwards, former postdoctoral researcher Sang Ouk Kim, chemical and biological engineering Professor Juan de Pablo, UW-Madison physics Associate Professor Marcus Mueller, and Harun Solak of the Paul Scherrer Institute in Switzerland.

The group conducted its work at the Center for Nanotechnology at UW-Madison's Synchrotron Radiation Center. It was funded in part by Semiconductor Research Corporation and the National Science Foundation's Nanoscale Science and Engineering Center.

####

Contact:
Jim Beal
608-263-0611
jbeal@engr.wisc.edu

Paul Nealey
(608) 265-8171
nealey@engr.wisc.edu

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Self Assembly

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanotubes that build themselves April 14th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Most Complex Nanoparticle Crystal Ever Made by Design: Possible applications include controlling light, capturing pollutants, delivering therapeutics March 2nd, 2017

Nanoelectronics

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Racyics Launches ‘makeChip’ Design Service Platform for GLOBALFOUNDRIES’ 22FDX® Technology: Racyics will provide IP and design services as a part of the foundry’s FDXcelerator™ Partner Program May 11th, 2017

Researchers “iron out” graphene’s wrinkles: New technique produces highly conductive graphene wafers April 3rd, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Materials/Metamaterials

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Self-healing tech charges up performance for silicon-containing battery anodes May 15th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

CCNY physicists demonstrate photonic hypercrystals for control of light-matter interaction May 5th, 2017

Announcements

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project