Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A step toward molecular-scale electronics

Abstract:
Approach has solves insurmountable hurdle to making a molecular device

Nanotech researchers take a key step toward molecular-scale electronics

Edmonton, Alberta, Canada | June 01, 2005

Molecular electronics – using molecules in the construction of electronic circuitry – just took a significant step closer to reality. Principal investigator Dr. Robert Wolkow, postdoctoral fellow Dr. Paul Piva and a team of researchers from the National Institute for Nanotechnology of the National Research Council and University of Alberta have designed and tested a new concept for a single molecule transistor. They have shown, for the first time, that a single charged atom on a silicon surface can regulate the conductivity of a nearby molecule. Their discovery is published in the June 2, 2005 edition of the scientific journal Nature.

Miniaturization of microelectronics has a finite end based on today’s technology. To continue, a new concept was needed which circumvented the limits of conventional transistor technology. The authors conducted an experiment to examine the potential for electrical transistors on a molecular scale. Their approach has solved what has been an insurmountable hurdle to making a molecular device – getting connections onto a single molecule.

single molecule transistor - National Research Council
Electric field emanating from the charged red atom causes energy level shifts in the molecule allowing current to flow.
Image courtesy National Research Council. Click for larger version.

They demonstrated that a single atom on a silicon surface can be controllably charged, while all surrounding atoms remain neutral. A molecule placed adjacent to that charged site is ‘tuned’, which allows electrical current to flow through the molecule from one electrode to another. The current flowing through the molecule can be switched on and off by changing the charge state of the adjacent atom. The results are promising and are considered to be a scientific breakthrough.

“We have shown the potential for devices of unheard-of smallness and unheard-of efficiency.” says Dr. Wolkow. “A technology based on this concept would require much less energy to power, would produce much less heat, and run much faster.

Molecules are exceedingly small, on the scale of a nanometre. Wolkow’s team solved the connection problem by using the electrostatic field emanating from a single atom to regulate the conductivity of a molecule, allowing an electric current to flow through the molecule. These effects were easily observed at room temperature, in contrast to previous molecular experiments that had to be done at temperatures close to absolute zero in order to measure a conductivity change. Another significant aspect of this breakthrough is the fact that only one electron from the atom is needed to turn molecular conductivity on or off. On a conventional transistor, this gating action requires about one million electrons.

“This concept could circumvent the limits of conventional transistor technology and permit miniaturization on a nanometric scale. Better…faster…cheaper – that’s the promise of molecular electronics. In our case, we also have a potentially powerful green technology because of its minimal power and material requirements, and the biodegradable nature of the device.”

Wolkow, a world-renowned researcher in nanotechnology, says that although his results represent a key step toward molecular electronics, more steps are required. He advocates doing research on hybrid molecular/silicon devices. “This way, we can piggyback on all the great capacity that has already been established for silicon, and just supplement it. Our prototype works on silicon – thus allowing the old technology to merge with the new. “

“I am optimistic that molecular electronic devices can be made using our method because I don’t see a reason why the remaining hurdles can’t be overcome. And given the promise of such devices – great speed, small size, and high efficiency – the hurdles are definitely worth tackling.”

Details of Publication
Field Regulation of Single Molecule Conductivity by a Charged Surface Atom
Nature, 02 June 2005

Paul G. Piva1,2, Gino A. DiLabio2, Jason L. Pitters2, Janik Zikovsky1, Mohamed Rezeq1,2, Stanislav Dogel1, Werner A. Hofer3 & Robert A. Wolkow1,2

1 Department of Physics, University of Alberta, Edmonton, Alberta, Canada
2 National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta, Canada
3 Surface Science Research Centre, University of Liverpool, Liverpool, UK

The following funding acknowledgements from the authors appear at the end of the paper:
Funding has been provided by iCORE, the NRC, the NSERC, CFI, the University of Alberta and CIAR.

####


Contact:
Shannon Jones
780-492-8636
shannon.jones@nrc.gc.ca

Copyright © University of Alberta

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project