Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New opportunities from old chemistry in surface science

Abstract:
Amines, when mixed with carbon disulfide, can bond to gold more robustly than thiols

New opportunities from old chemistry in surface science, say Purdue chemists

West Lafayette, IN | May 26, 2005

Some century-old chemistry could have a strong impact on important issues in biosensors and other nanotech devices, according to a Purdue University research group.

A team led by Alexander Wei has shown that amines, a large and important class of organic molecules, when mixed with carbon disulfide, can bond to gold more robustly than thiols, which are commonly used materials for giving new functions to metal surfaces. Gold surfaces are often used as baseplates of sensors and in nanomaterials, and scientists have been searching for stable organic coatings they can attach to gold to form an interface between the organic and inorganic worlds. The group's findings suggest that amines may be the best candidate group of such materials.

"Amines could allow us to expand the range of molecules which can be incorporated into sensors for the biotech field," said Wei, who is an associate professor of chemistry in Purdue's College of Science. "Amines react with carbon disulfide to form dithiocarbamates (DTCs) and appear to be better suited for coating surfaces than thiols, which have been the standard thus far. The DTC chemistry itself has been around for over 100 years, but we think it can offer many opportunities for current applications in biosensors and nanotechnology."

Wei performed the study with his Purdue colleagues Yan Zhao, Waleska Pérez-Segarra and Qicun Shi. Their work appeared in this week's (Vol. 127, No. 20) issue of the Journal of the American Chemical Society.

Nanotechnologists and other materials scientists use gold as an interface between electronic components and organic or biomolecular substances. Gold's conductivity and resistance to corrosion makes it an ideal surface for attaching molecules that can detect the presence of proteins in the blood that indicate disease, for example.

"Up to this point, the standard practice has been to modify gold surfaces with thiols, because they are relatively easy to work with and form coatings quickly," Wei said. "Thiols are well known to adsorb, or stick, onto gold surfaces to form highly uniform films with adjustable surface properties. But a drawback to thiols is their intermittent hold on the surface, and the relatively weak chemical bond makes them less attractive for applications that require environmentally durable coatings."

Wei's team found that converting amines into DTCs empower them with an ability to grasp gold surfaces with a strength that thiols do not possess.

"As DTCs, the amines are armed with a 'pincer' made of two sulfur atoms," Wei said. "Thiols are typically bonded to gold by one sulfur atom, like pins stuck in a gold pincushion. DTCs are more like a vice grip, so we hope they will last longer on the gold."

Wei said that although DTCs have been around for a long time, their application to surface chemistry has been overlooked and is long overdue. But Wei cautions that further studies are needed to establish the full scope and limitations of DTCs for various applications.

Wei is associated with Purdue's Birck Nanotechnology Center, which will be one of the largest university facilities in the nation dedicated to nanotechnology research when construction is completed in the summer of 2005. Nearly 100 groups associated with the center are pursuing diverse research topics such as nanometer-sized machines, advanced materials for nanoelectronics and nanoscale biosensors.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Source: Alexander Wei, alexwei@purdue.edu

####

Contact:
Purdue News Service
(765) 494-2096
purduenews@purdue.edu

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Sensors

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Discoveries

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Announcements

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project