Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New opportunities from old chemistry in surface science

Abstract:
Amines, when mixed with carbon disulfide, can bond to gold more robustly than thiols

New opportunities from old chemistry in surface science, say Purdue chemists

West Lafayette, IN | May 26, 2005

Some century-old chemistry could have a strong impact on important issues in biosensors and other nanotech devices, according to a Purdue University research group.

A team led by Alexander Wei has shown that amines, a large and important class of organic molecules, when mixed with carbon disulfide, can bond to gold more robustly than thiols, which are commonly used materials for giving new functions to metal surfaces. Gold surfaces are often used as baseplates of sensors and in nanomaterials, and scientists have been searching for stable organic coatings they can attach to gold to form an interface between the organic and inorganic worlds. The group's findings suggest that amines may be the best candidate group of such materials.

"Amines could allow us to expand the range of molecules which can be incorporated into sensors for the biotech field," said Wei, who is an associate professor of chemistry in Purdue's College of Science. "Amines react with carbon disulfide to form dithiocarbamates (DTCs) and appear to be better suited for coating surfaces than thiols, which have been the standard thus far. The DTC chemistry itself has been around for over 100 years, but we think it can offer many opportunities for current applications in biosensors and nanotechnology."

Wei performed the study with his Purdue colleagues Yan Zhao, Waleska Pérez-Segarra and Qicun Shi. Their work appeared in this week's (Vol. 127, No. 20) issue of the Journal of the American Chemical Society.

Nanotechnologists and other materials scientists use gold as an interface between electronic components and organic or biomolecular substances. Gold's conductivity and resistance to corrosion makes it an ideal surface for attaching molecules that can detect the presence of proteins in the blood that indicate disease, for example.

"Up to this point, the standard practice has been to modify gold surfaces with thiols, because they are relatively easy to work with and form coatings quickly," Wei said. "Thiols are well known to adsorb, or stick, onto gold surfaces to form highly uniform films with adjustable surface properties. But a drawback to thiols is their intermittent hold on the surface, and the relatively weak chemical bond makes them less attractive for applications that require environmentally durable coatings."

Wei's team found that converting amines into DTCs empower them with an ability to grasp gold surfaces with a strength that thiols do not possess.

"As DTCs, the amines are armed with a 'pincer' made of two sulfur atoms," Wei said. "Thiols are typically bonded to gold by one sulfur atom, like pins stuck in a gold pincushion. DTCs are more like a vice grip, so we hope they will last longer on the gold."

Wei said that although DTCs have been around for a long time, their application to surface chemistry has been overlooked and is long overdue. But Wei cautions that further studies are needed to establish the full scope and limitations of DTCs for various applications.

Wei is associated with Purdue's Birck Nanotechnology Center, which will be one of the largest university facilities in the nation dedicated to nanotechnology research when construction is completed in the summer of 2005. Nearly 100 groups associated with the center are pursuing diverse research topics such as nanometer-sized machines, advanced materials for nanoelectronics and nanoscale biosensors.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Source: Alexander Wei, alexwei@purdue.edu

####

Contact:
Purdue News Service
(765) 494-2096
purduenews@purdue.edu

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Sensors

The next generation of carbon monoxide nanosensors May 26th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Electronic device detects molecules linked to cancer, Alzheimer's and Parkinson's: An inexpensive portable biosensor has been developed by researchers at Brazil's National Nanotechnology Laboratory with FAPESP's support May 20th, 2016

Making organs transparent to improve nanomedicine (video) May 13th, 2016

Discoveries

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Announcements

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic