Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanotech: Moving Closer to a Manufacturing Revolution

Abstract:
Molecular Manufacturing: What, Why and How

Nanotech: Moving Closer to a Manufacturing Revolution

New York, NY | May 17, 2005

Nanotechnology's long-expected transformation of manufacturing has just moved closer to reality. A new analysis of existing technological capabilities, including proposed steps from today's nanotech to advanced molecular machine systems, was released today by the Center for Responsible Nanotechnology.

The study, "Molecular Manufacturing: What, Why and How," performed by Chris Phoenix, CRN Director of Research, is available online at Wise-Nano.org. It shows how existing technologies can be coordinated toward a reachable goal of general-purpose molecular manufacturing.

"Molecular manufacturing offers a fundamentally new approach to build things 'from the bottom up'," said Phoenix. "The idea is to use nanoscale machines to create structures with atomic precision. Ultimately, that can result in the ability to make complex products, both small and large, with unprecedented performance and value."

Theories and concepts for molecular manufacturing, first proposed in the 1980's by nanotechnology pioneer K. Eric Drexler, have improved steadily since then. But recent progress is occurring at a faster pace. Less than two years ago, Phoenix published the first detailed architecture for a "nanofactory," a remarkably powerful general-purpose manufacturing appliance that could sit on a desktop. Since then, Drexler, working with John Burch, has developed an improved design that should be significantly more efficient.

Recent developments in DNA synthesis and polymer construction, plus advances in miniaturization and precision of scanning probe microscopes, are rapidly adding pieces to the nanotech jigsaw puzzle.

This new study puts the pieces in place. Presenting research performed by CRN under a grant from NASA's Institute for Advanced Concepts, while also updating and combining existing work in related fields, it describes a newly simplified way to develop molecular manufacturing starting with today's technology.

Phoenix describes two approaches for building the initial basic tools with current technology. Other sections outline incremental improvement from those early tools toward the first integrated nanofactory, and analyze a scalable architecture for a more advanced nanofactory. Product performance and likely applications are discussed, as well as incentives for corporate or government investment in the technology. Finally, considerations and recommendations for a targeted development program are presented.

"We've done an end-to-end analysis of molecular manufacturing's goals as well as some ways to get there," said Phoenix. "More important, this study shows that development of the technology will be both highly desirable and relatively straightforward. It's probably not as far away as many people think, which means it's time to begin discussing the ramifications, both positive and negative."

"Molecular Manufacturing: What, Why and How" does not directly address the societal, environmental, medical, economic, military, security, and geopolitical implications of the technology's introduction. However, those topics are explored in other papers and articles on CRN’s website.

This release is posted online, here.

The full study is available, here.

Other resources:

####

About The Center for Responsible Nanotechnology:
The Center for Responsible Nanotechnology is headquartered in New York. CRN is a non-profit think tank concerned with the major societal and environmental implications of advanced nanotechnology. We promote public awareness and education, and the crafting and implementation of effective policy to maximize benefits and reduce dangers. CRN is an affiliate of World Care, an international, non-profit, 501(c)(3) organization.

For more information visit CRNano.org


Contact:
Mike Treder
Executive Director
1-718-398-7272
mtreder@CRNano.org

Chris Phoenix
Director of Research
1-305-387-5583
cphoenix@CRNano.org

Copyright © The Center for Responsible Nanotechnology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Molecular Nanotechnology

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

Scientists come up with light-driven motors to power nanorobots of the future: Researchers from Russia and Ukraine propose a nanosized motor controlled by a laser with potential applications across the natural sciences and medicine November 11th, 2016

New Book by Nobel Laureate Tells Story of Chemistry’s New Field: Fraser Stoddart explains the mechanical bond and where it is taking scientists November 11th, 2016

HKU chemists develop world's first light-seeking synthetic Nanorobot November 9th, 2016

Announcements

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project