Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Quantum Dots Get Smaller

May 13th, 2005

Quantum Dots Get Smaller

Abstract:
For all the hype about nanotechnology, sometimes small isn't quite small enough. Quantum dots enable imaging advances in fields from oncology to neuroscience, yet at a whopping dozen nanometers or more, sometimes they're just too big. "They're the size of proteins," says Marcel P. Bruchez, cofounding scientist at Quantum Dots Corp. "Anything you can do to minimize the size will minimize the impact on the biological system."

A quantum dot's size governs the color of light it emits, but the size that determines the optical properties is only the core-shell. The problem is that for biological applications, quantum dots must be changed from being hydrophobic as grown, to hydrophilic, without a loss in fluorescence or stability.

The solution is to create the high-tech equivalent of a peanut M&M: a semiconductor core (usually cadmium sulfide, selenide, or telluride), coated by an insulating shell, which is then given a ligand coating, sometimes called a cap. The amphiphilic ligand is hydrophobic where it interfaces with the shell and hydrophilic where it interfaces with the biological conjugate (e.g., antibodies, peptides, or oligonucleotides) and the environment.

Source:
* The Scientist

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Quantum Dots Corp.

Moungi Bawendi

Shimon Weiss

Evident Technologies

Shuming Nie

Related News Press

Possible Futures

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Nanomedicine

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Announcements

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project