Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UNC scientists develop promising new X-ray device

Abstract:
Device can create images of objects from numerous angles and without mechanical motion

UNC scientists develop promising new X-ray device using carbon nanotubes

Chapel Hill, NC | May 12, 2005

Scientists at the University of North Carolina at Chapel Hill and a UNC start-up company, Xintek, Inc., have invented a new X-ray device based on carbon nanotubes that emits a scanning X-ray beam composed of multiple smaller beams while also remaining stationary.

As a result, the device can create images of objects from numerous angles and without mechanical motion, which is a distinct advantage for any machine since it increases imaging speed, can reduce the size of the device and requires less maintenance.

A report on the promising invention appears in this week’s issue (May 9) of Applied Physics Letters, a science and technology journal. The physicists already have received U.S. patents on elements of the work and expect more to be granted.

"This technology can lead to smaller and faster X-ray imaging systems for airport baggage screening and for tomographic medical imaging such as CT (computed tomography) scanners," said Dr. Otto Zhou, Lyle Jones distinguished professor of physics and materials sciences in UNC's College of Arts and Sciences.

"We believe this is an important advance in X-ray technology, and we are extremely excited about it," Zhou said. "If it works as well as we think it will, other advantages will be that scanners will be cheaper, use less electricity and produce higher-resolution images."

Other authors of the paper are physics doctoral students Jian Zhang and Guang Yang and Dr. Jian Ping Lu, professor of physics and astronomy at UNC, Dr. Yueh Z. Lee of the UNC School of Medicine and Dr. Yuan Cheng, Dr. Bo Gao and Qi Qiu of Xintek, Inc., a Research Triangle Park, N.C.-based nanotechnology company.

Scientists and others, including the news media, have shown strong interest in carbon nanotubes because of numerous potential applications, Zhou said. Discovered about a decade ago, the tiny bits of carbon are very strong tubular structures formed from a single layer of carbon atoms and are only about a billionth of a meter in diameter.

Industrial and university researchers around the world are now developing new devices using the nanotubes, such as field emission flat panel displays, high-strength composites and high energy-density batteries.

The UNC researchers demonstrated that carbon nanotubes might be used as X-ray sources and received their first patent in 2000. Prior to that, conventional X-ray tube design had not changed much in a century.

The nanotube X-ray technology allows the device to be operated at room temperature rather than at the 1,000 degrees Celsius that conventional sources require. It can also be operated as a high-speed X-ray camera, capturing clear images of objects moving at high speed. The team has now received two U.S. patents on the general concepts of nanotube X-rays. Xintek, the UNC spin-off, is working with several manufacturers to commercialize the technology.

"When fully developed, devices should lead to more effective imaging systems for homeland security," Zhou said.

The new invention can create images of various objects from numerous angles without mechanical motion, he said.

In conventional CT scanners used in airports for baggage screening and in hospitals for diagnostic imaging, the X-ray source is mechanically rotated around objects, including patients, to collect the many projection images required to construct a three-dimensional picture, Zhou said. Existing scanners are large and expensive.

"In addition, the imaging speed is relatively low," he said. "The new scanning X-ray source using nanotubes can electronically produce X-ray beams from different angles without moving. This can significantly increase the imaging speed and reduce the size of the scanner. Making this technology smaller, faster and more accurate should boost the effectiveness of airport baggage scanners significantly."

Xintek Inc., which seeks to develop new industrial and medical applications for carbon nanotubes, resulted from Zhou’s group's work. Support for the research has come from the U.S. Transportation Safety Administration, the National Institutes of Health and private sources.

Dr. Zhou can be reached at (919) 962-3297 or Zhou@physics.unc.edu

####


Contact:
David Williamson
(919) 962-8596

Copyright © University of North Carolina at Chapel Hill

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Nanotubes/Buckyballs

Chromium-centered cycloparaphenylene rings for making functionalized nanocarbons January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

Carbon nanotube finding could lead to flexible electronics with longer battery life January 14th, 2015

Announcements

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Tools

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Joint international research project leads to a breakthrough in terahertz spectroscopy January 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE