Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UNC scientists develop promising new X-ray device

Abstract:
Device can create images of objects from numerous angles and without mechanical motion

UNC scientists develop promising new X-ray device using carbon nanotubes

Chapel Hill, NC | May 12, 2005

Scientists at the University of North Carolina at Chapel Hill and a UNC start-up company, Xintek, Inc., have invented a new X-ray device based on carbon nanotubes that emits a scanning X-ray beam composed of multiple smaller beams while also remaining stationary.

As a result, the device can create images of objects from numerous angles and without mechanical motion, which is a distinct advantage for any machine since it increases imaging speed, can reduce the size of the device and requires less maintenance.

A report on the promising invention appears in this week’s issue (May 9) of Applied Physics Letters, a science and technology journal. The physicists already have received U.S. patents on elements of the work and expect more to be granted.

"This technology can lead to smaller and faster X-ray imaging systems for airport baggage screening and for tomographic medical imaging such as CT (computed tomography) scanners," said Dr. Otto Zhou, Lyle Jones distinguished professor of physics and materials sciences in UNC's College of Arts and Sciences.

"We believe this is an important advance in X-ray technology, and we are extremely excited about it," Zhou said. "If it works as well as we think it will, other advantages will be that scanners will be cheaper, use less electricity and produce higher-resolution images."

Other authors of the paper are physics doctoral students Jian Zhang and Guang Yang and Dr. Jian Ping Lu, professor of physics and astronomy at UNC, Dr. Yueh Z. Lee of the UNC School of Medicine and Dr. Yuan Cheng, Dr. Bo Gao and Qi Qiu of Xintek, Inc., a Research Triangle Park, N.C.-based nanotechnology company.

Scientists and others, including the news media, have shown strong interest in carbon nanotubes because of numerous potential applications, Zhou said. Discovered about a decade ago, the tiny bits of carbon are very strong tubular structures formed from a single layer of carbon atoms and are only about a billionth of a meter in diameter.

Industrial and university researchers around the world are now developing new devices using the nanotubes, such as field emission flat panel displays, high-strength composites and high energy-density batteries.

The UNC researchers demonstrated that carbon nanotubes might be used as X-ray sources and received their first patent in 2000. Prior to that, conventional X-ray tube design had not changed much in a century.

The nanotube X-ray technology allows the device to be operated at room temperature rather than at the 1,000 degrees Celsius that conventional sources require. It can also be operated as a high-speed X-ray camera, capturing clear images of objects moving at high speed. The team has now received two U.S. patents on the general concepts of nanotube X-rays. Xintek, the UNC spin-off, is working with several manufacturers to commercialize the technology.

"When fully developed, devices should lead to more effective imaging systems for homeland security," Zhou said.

The new invention can create images of various objects from numerous angles without mechanical motion, he said.

In conventional CT scanners used in airports for baggage screening and in hospitals for diagnostic imaging, the X-ray source is mechanically rotated around objects, including patients, to collect the many projection images required to construct a three-dimensional picture, Zhou said. Existing scanners are large and expensive.

"In addition, the imaging speed is relatively low," he said. "The new scanning X-ray source using nanotubes can electronically produce X-ray beams from different angles without moving. This can significantly increase the imaging speed and reduce the size of the scanner. Making this technology smaller, faster and more accurate should boost the effectiveness of airport baggage scanners significantly."

Xintek Inc., which seeks to develop new industrial and medical applications for carbon nanotubes, resulted from Zhou’s group's work. Support for the research has come from the U.S. Transportation Safety Administration, the National Institutes of Health and private sources.

Dr. Zhou can be reached at (919) 962-3297 or Zhou@physics.unc.edu

####


Contact:
David Williamson
(919) 962-8596

Copyright © University of North Carolina at Chapel Hill

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

Nanotubes/Buckyballs/Fullerenes

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

WPI researchers build liquid biopsy chip that detects metastatic cancer cells in blood December 15th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Announcements

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Tools

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanomechanics Inc. Continues Growth in Revenue and Market Penetration: Leading nanoindentation company reports continued growth in revenues and distribution channels on national and international scales December 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project