Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Spontaneous ignition discovery has ORNL researcher fired up

Abstract:
Novel method to achieve spontaneous ignition and sustained combustion at room temperature

Spontaneous ignition discovery has ORNL researcher fired up

Oak Ridge, TN | April 19, 2005

Zhiyu Hu believes it is possible to match nature's highly efficient method to convert chemicals into thermal energy at room temperature, and he has data and a published paper to support his theory.

In a paper scheduled to appear in the May 18 print issue of the American Chemical Society's Energy & Fuels, Oak Ridge National Laboratory's Hu describes a novel method to achieve spontaneous ignition and sustained combustion at room temperature. He achieves this "nano-catalytic reaction" with nothing but nanometer-sized particles of platinum stuck to fibers of glass wool in a small jar with methanol and air – with no source of external ignition.

Although this began as little more than a curiosity, Hu quickly realized that the implications could be significant because of the potential gains in energy conversion and utilization. Hu now cites possibilities in the area of distributed power generation and perhaps military and homeland defense.

While additional research needs to be performed to understand the phenomena, Hu notes that natural organisms such as microbes, plants and animals obtain energy from oxidation of the same organic chemicals at their physiological, or body, temperatures. Many of these biological reactions also use metals as part of their enzyme catalysts. Still, this is a surprising result in the field of metal catalysis.

"Since the caveman days, we have burned things to utilize their energy, and the high temperatures and the entire process have created a lot of problems that we're then forced to deal with," said Hu, a physicist in the Life Sciences Division of the Department of Energy's ORNL.

Citing the wisdom of one of the all-time great scientists, Hu noted that Albert Einstein once said, "Problems cannot be solved at the same level of awareness that created them." So, according to Hu, the best way to solve the energy crisis is to replace our existing fuel consuming method with one that has much higher efficiency and less environmental impact.

Indeed, there is room for efficiency improvement, Hu said, noting that an internal combustion engine is only about 21 percent efficient. The process also creates environmental concerns because of nitrogen oxide emissions that form because of the high combustion temperatures. Even an advanced fuel cell is only about 50 percent efficient, and it must be operated at a temperature that is much higher than our body or room temperature, which requires costly components able to withstand harsh conditions.

"What we have is the possibility of retrieving energy at a lower temperature with greater efficiency and lower environmental effects," Hu said.

The method outlined in the paper "Nano-catalytic spontaneous ignition and self-supporting room-temperature combustion," co-written by ORNL's Vassil Boiadjiev and Thomas Thundat, was discovered unintentionally. Hu was actually conducting another experiment with platinum particles, methanol and cotton swabs when he noticed the mixture produced smoke. He consulted with Thundat and others who encouraged him to figure out what was happening.

"This wasn't research that was funded, so I worked evenings and weekends to try to understand why and how this happened," Hu said. He replicated the discovery numerous times under different conditions and noticed that the reactions can reach high temperatures of greater than 600 degrees Celsius and low temperatures of just a few tenths of a degree above room temperature.

Hu also learned that he can control the reaction by varying the fuel-air mixture, and he discovered that the process can be dramatically changed by reducing the particle size and changing the particle's morphology, or shape.

####


Oak Ridge National Laboratory is managed by UT-Battelle for the Department of Energy.



Media Contact:
Ron Walli
Communications and External Relations
865.576.0226

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Discoveries

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Materials/Metamaterials

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Iranian Nano Scientists Create Flame-Resistant Polymers September 13th, 2014

Announcements

Dolomite to launch Meros TCU-100 temperature controller at Lab-on-a-Chip & Microarray World Congress September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Environment

Iranian Nano Scientists Create Flame-Resistant Polymers September 13th, 2014

NanoStruck has a High Recovery Rate on Mine Tailings: retrieval of up to 96% of Gold, 88% of Silver and 86% of Palladium September 12th, 2014

Nanostruck announces 87.6% recovery of 56 GMS/ton silver tailings samples September 12th, 2014

Boosting armor for nuclear-waste eating microbes September 12th, 2014

Energy

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

UT Arlington research uses nanotechnology to help cool electrons with no external sources September 11th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE